The Role Of TiO2 Nanoparticles On Mixed Matrix Cellulose Acetate Asymmetric Membranes

Author(s):  
Shirish H. Sonawane ◽  
Antonine Terrien ◽  
Ana Sofia Figueiredo ◽  
M. Clara GonÇalves ◽  
Maria Norberta De Pinho
2015 ◽  
Vol 38 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Shirish H. Sonawane ◽  
Antonine Terrien ◽  
Ana Sofia Figueiredo ◽  
M. Clara Gonçalves ◽  
Maria Norberta De Pinho

2021 ◽  
Vol 11 (2) ◽  
pp. 313-330
Author(s):  
Ovaid Mehmood ◽  
Sarah Farrukh ◽  
Arshad Hussain ◽  
Mohammad Younas ◽  
Zarrar Salahuddin ◽  
...  

Friction ◽  
2021 ◽  
Author(s):  
Pengcheng Li ◽  
Chongyang Tang ◽  
Xiangheng Xiao ◽  
Yanmin Jia ◽  
Wanping Chen

AbstractThe friction between nanomaterials and Teflon magnetic stirring rods has recently drawn much attention for its role in dye degradation by magnetic stirring in dark. Presently the friction between TiO2 nanoparticles and magnetic stirring rods in water has been deliberately enhanced and explored. As much as 1.00 g TiO2 nanoparticles were dispersed in 50 mL water in 100 mL quartz glass reactor, which got gas-closed with about 50 mL air and a Teflon magnetic stirring rod in it. The suspension in the reactor was magnetically stirred in dark. Flammable gases of 22.00 ppm CO, 2.45 ppm CH4, and 0.75 ppm H2 were surprisingly observed after 50 h of magnetic stirring. For reference, only 1.78 ppm CO, 2.17 ppm CH4, and 0.33 ppm H2 were obtained after the same time of magnetic stirring without TiO2 nanoparticles. Four magnetic stirring rods were simultaneously employed to further enhance the stirring, and as much as 30.04 ppm CO, 2.61 ppm CH4, and 8.98 ppm H2 were produced after 50 h of magnetic stirring. A mechanism for the catalytic role of TiO2 nanoparticles in producing the flammable gases is established, in which mechanical energy is absorbed through friction by TiO2 nanoparticles and converted into chemical energy for the reduction of CO2 and H2O. This finding clearly demonstrates a great potential for nanostructured semiconductors to utilize mechanical energy through friction for the production of flammable gases.


2016 ◽  
Vol 60 ◽  
pp. 403-413 ◽  
Author(s):  
Hamidreza Sanaeepur ◽  
Ali Kargari ◽  
Bahram Nasernejad ◽  
Abtin Ebadi Amooghin ◽  
Mohammadreza Omidkhah

2021 ◽  
pp. 107302
Author(s):  
Biao Yuan ◽  
Bing Jiang ◽  
Han Li ◽  
Xiao Xu ◽  
Fei Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document