magnetic stirring
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 46)

H-INDEX

20
(FIVE YEARS 5)

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6734
Author(s):  
Heidy Lorena Calambas ◽  
Abril Fonseca ◽  
Dayana Adames ◽  
Yaneli Aguirre-Loredo ◽  
Carolina Caicedo

The preparation and characterization of biodegradable films based on starch-PVA-nanoclay by solvent casting are reported in this study. The films were prepared with a relation of 3:2 of starch:PVA and nanoclay (0.5, 1.0, and 1.5% w/v), and glycerol as plasticizer. The nanoclays before being incorporated in the filmogenic solution of starch-PVA were dispersed in two ways: by magnetic stirring and by sonication. The SEM results suggest that the sonication of nanoclay is necessary to reach a good dispersion along the polymeric matrix. FTIR results of films with 1.0 and 1.5% w/v of sonicated nanoclay suggest a strong interaction of hydrogen bond with the polymeric matrix of starch-PVA. However, the properties of WVP, tensile strength, percentage of elongation at break, and Young’s modulus improved to the film with sonicated nanoclay at 0.5% w/v, while in films with 1.0 and 1.5% w/w these properties were even worse than in film without nanoclay. Nanoclay concentrations higher than 1.0 w/v saturate the polymer matrix, affecting the physicochemical properties. Accordingly, the successful incorporation of nanoclays at 0.5% w/v into the matrix starch-PVA suggests that this film is a good candidate for use as biodegradable packaging.


Author(s):  
Tianyu Zhang ◽  
Huijing Wang ◽  
Xiaodi Guo ◽  
Shiheng Shao ◽  
Lei Ding ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2952
Author(s):  
Beatriz Merillas ◽  
Fernando Villafañe ◽  
Miguel Ángel Rodríguez-Pérez

To determine the effect of nanoclays and trapped air on the formation of rigid polyurethane foams, three different production procedures were used. To study the influence of mixing at atmospheric pressure, two approaches were carried out employing either an electric or a magnetic stirrer. The third approach was executed by mixing under vacuum conditions with magnetic stirring. The samples thus obtained were characterized, and the effect of trapped air into the reactive mixtures was evaluated by analyzing the cellular structures. Different levels of trapped air were achieved when employing each manufacturing method. A correlation between the trapped air and the increase in the nucleation density when nanoclays were added was found: the cell nucleation density increased by 1.54 and 1.25 times under atmospheric conditions with electric and magnetic stirring, respectively. Nevertheless, samples fabricated without the presence of air did not show any nucleating effect despite the nanoclay addition (ratio of 1.09). This result suggests that the inclusion of air into the components is key for improving nucleation and that this effect is more pronounced when the polyol viscosity increases due to nanoclay addition. This is the most important feature determining the nucleating effect and, therefore, the corresponding cell size decreases.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dang Trung Trinh ◽  
An Binh Quach ◽  
Tran Van Ty ◽  
Duangdao Channei ◽  
Auppatham Nakaruk ◽  
...  

Agitation was a significant factor in achieving the high performance of the electrocoagulation (EC) system. Three EC systems with four parellal monopolar Al electrodes were established to clarify the influence of agitation methods on pollutants removal efficiency; magnetic stirring, continuous aeration, and combination of magnetic stirring and aeration. The aim of this work was to maximize industrial wastewater treatment in a short detention time and to understand the mechanisms that occurred in different EC systems. The coolant wastewater from the aluminum product industry was represented as industrial wastewater. The hybrid stirring-aeration EC system obtained a lower COD removal compared to the stirring EC system and the aeration EC system. Although aeration can cause an increase in COD removal due to complete circulation and effective coagulant formation of Fe (OH), however, the combination of aeration and stirring negatively affected the performance of CE. The possible reason was that the excessive agitation led to a rapid mixing of the solution, and then the coagulants and pollutants obtained insufficient time to form flocs to precipitate. The best EC performance was observed in the aeration EC system, followed by the stirring EC system, control system (without agitations), and the stirring aeration EC system, respectively, in the short detention time of 15 min. Furthermore, all EC systems could achieve an excellent COD removal of 91% when the detention time was sufficient (eg, 45 min for the stirring aeration EC system). Furthermore, the decreasing number of electrodes affected the COD removal efficiency, whereas the NaCl additive was insignificantly affected.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4578
Author(s):  
Marija Riđošić ◽  
Mihael Bučko ◽  
Asier Salicio-Paz ◽  
Eva García-Lecina ◽  
Ljiljana S. Živković ◽  
...  

Novel Zn-Co-CeO2 protective composite coatings were deposited successfully from chloride plating solutions. Two different types of ceria sources were used and compared: commercial ceria powder and home-made ceria sol. Electrodeposition was performed by a direct current in the range of 1–8 A dm−2. Two different agitation modes were used and compared, magnetic stirring and ultrasound-assisted stirring (US). The influence of magnetic stirring on the stability of the related plating baths was evaluated via a dynamic scattering method. The results pointed to better stability of the prepared ceria sol. The morphology of the composite coatings was examined by scanning electron microscopy (SEM), and particle content was determined by energy-dispersive X-ray spectroscopy (EDS). The results showed that the increase in the deposition current density was not beneficial to the coating morphology and particle content. The corrosion behavior of the Zn-Co-CeO2 composite coatings was analyzed and compared by electrochemical impedance spectroscopy and polarization resistance. The ultrasound-assisted electrodeposition at small current densities was favorable for obtaining composite coatings with enhanced corrosion stability. The protection was more effective when US was applied and, additionally, upon utilization of ceria sol as a particle source, which was revealed by higher polarization resistance and greater low-frequency impedance modulus values for sol-derived composite coatings deposited under ultrasound.


Sign in / Sign up

Export Citation Format

Share Document