Analysis of the first-order density in Hilbert space

2016 ◽  
pp. 33-47
Keyword(s):  
2015 ◽  
Vol 18 (6) ◽  
Author(s):  
Therese Mur ◽  
Hernán R. Henríquez

AbstractIn this paper we are concerned with the controllability of control systems governed by a fractional differential equation in Banach spaces. Using the properties of the Mittag-Leffler function we generalize to these systems a result of Korobov and Rabakh, which was established for first order systems. We apply our results to study the controllability of a system modeled by a fractional integral equation in a Hilbert space.


2006 ◽  
Vol 18 (02) ◽  
pp. 163-199 ◽  
Author(s):  
STEFAN BERCEANU

A representation of the Jacobi algebra 𝔥1 ⋊ 𝔰𝔲(1, 1) by first-order differential operators with polynomial coefficients on the manifold [Formula: see text] is presented. The Hilbert space of holomorphic functions on which the holomorphic first-order differential operators with polynomials coefficients act is constructed.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Carlo Maccaferri ◽  
Jakub Vošmera

Abstract In this paper, which is the last of a series including [1, 2] we first verify that the two open-closed effective potentials derived in the previous paper from the WZW theory in the large Hilbert space and the A∞ theory in the small Hilbert space have the same vacuum structure. In particular, we show that mass-term deformations given by the effective (open)2-closed couplings are the same, provided the effective tadpole is vanishing to first order in the closed string deformation. We show that this condition is always realized when the worldsheet BCFT enjoys a global $$ \mathcal{N} $$ N = 2 superconformal symmetry and the deforming closed string belongs to the chiral ring in both the holomorphic and anti-holomorphic sector. In this case it is possible to explicitly evaluate the mass deformation by localizing the SFT Feynman diagrams to the boundary of world-sheet moduli space, reducing the amplitude to a simple open string two-point function. As a non-trivial check of our construction we couple a constant Kalb-Ramond closed string state to the OSFT on the D3–D(−1) system and we show that half of the bosonic blowing-up moduli become tachyonic, making the system condense to a bound state whose binding energy we compute exactly to second order in the closed string deformation, finding agreement with the literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Z. I. Ismailov ◽  
P. Ipek

By using the methods of operator theory, all solvable extensions of minimal operator generated by first order pantograph-type delay differential-operator expression in the Hilbert space of vector-functions on finite interval have been considered. As a result, the exact formula for the spectrums of these extensions is presented. Applications of obtained results to the concrete models are illustrated.


The possibility of extending the application of the formalism used for the electron and meson fields, as developed from the equation ∂ k β k ψ ═ ik ψ to other types of field, is investigated. It is shown that, subject to the conditions that (1) the equations must contain no subsidiary conditions, (2) either the total energy must be positive definite, or it must be possible to quantize the equations according to Fermi statistics without using an indefinite metric in Hilbert space, no such extension is possible.


Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 999-1007
Author(s):  
Necmettin Aggez ◽  
Gulay Yucel

This paper is concerned with establishing the solvability of the nonlocal boundary value problem for the semilinear hyperbolic equation in a Hilbert space. For the approximate solution of this problem, the first order of accuracy difference scheme is presented. Under some assumptions, the convergence estimate for the solution of this difference scheme is obtained. Moreover, these results are supported by a numerical example.


Author(s):  
Abbas Ja'afaru Badakaya ◽  
Bilyaminu Muhammad

We study a pursuit differential game problem with finite number of pursuers and one evader on a nonempty closed convex subset of the Hilbert space l2. Players move according to certain first order ordinary differential equations and control functions of the pursuers and evader are subject to integral constraints. Pursuers win the game if the geometric positions of a pursuer and the evader coincide. We formulated and prove theorems that are concern with conditions that ensure win for the pursuers. Consequently, wining strategies of the pursuers are constructed. Furthermore, illustrative example is given to demonstrate the result.


Sign in / Sign up

Export Citation Format

Share Document