Numerical simulation of the stress-strain behavior of intact granite specimens with Particle Flow Code

Author(s):  
U Castro-Filgueira ◽  
L Alejano ◽  
J Arzúa ◽  
D Mas
Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhi-jun Zhang ◽  
Yao-hui Guo ◽  
Ya-kun Tian ◽  
Lin Hu ◽  
Xi-xian Wang ◽  
...  

Particle flow numerical simulation software (PFC3D) was utilized to establish the consolidated-undrained triaxial compression test numerical models of mine tailings with different dry densities to deeply investigate the macroscopic and microscopic characteristics of mine tailings in a tailing pond in Hunan Province. Comparing the results of the simulation and the laboratory experiment, the mesoscopic parameters of the particle flow numerical simulation were obtained through continuously adjusting the mesoscopic parameter with the higher degree of agreement between the stress-strain curve, the peak strength, and the elastic modulus as the determining standard. The macroscopic and microscopic characteristics of mine tailings were studied from the perspectives of stress-strain, axial strain-volume strain, coordination number, particle velocity vector, and contact force between particles. After numerous numerical tests, it was found that the PFC3D simulation results are consistent with experiment results of the dry density tailing samples under different confining pressures; compared with the high confining pressure, the simulation test results at lower confining pressures were more with that of the laboratory tests; low density and high confining pressure both have inhibitory effect on the dilatancy characteristics of triaxial samples; with the same confining pressure, the dilatancy tendency of low dry density samples is suppressed comparing with the high dry density samples. The initial coordination number of the numerical model is large, which proves that the contact degree of the model is good to some extent.


2012 ◽  
Vol 482-484 ◽  
pp. 1358-1361
Author(s):  
Yue Jing Zhao ◽  
Zhi Ying Qin

Vibrating sieve is a special kind of equipment which used to grading materials according to particle granularity. By the vibration acted on the sieve, the materials are loosed, are divided into layers, are transported and are permeated the sieve to screen the materials. Discrete Element Method (DEM) has been an effective numerical method to research the granule system motion. Using Particle Flow Code (PFC) based DEM, the screening process, the particle group motions on the screen, are simulated. How the amplitude, the frequency of vibration, the vibration direction angle, the decline degree of sieve effect screening efficiency are presented.


2013 ◽  
Vol 477-478 ◽  
pp. 485-491 ◽  
Author(s):  
Feng Sun ◽  
Rong Pan ◽  
Xiu Yun Zhu ◽  
Tie Lin Chen

Due to the complication of grouting process in soil, design of fracture grouting works is still mainly based on empirical considerations and experiences from past projects. Based on the theory of particle flow, the domain of flow is defined by using Fish language implemented in PFC and the formulas for flow and pressure are put forward respectively. Combined with above study, the process of fracture grouting in soil is simulated with particle flow code (PFC2D) from micro-viewpoint under coupling environment. In addition, the emergence and development of crack and grouting pressure in soil is analyzed under different grouting pressure and soil properties. The research results show that pressure plays a key role in consolidating the soil by fracture grouting, but in fact it should be kept in a reasonable value in order to forming grouting slurry net entirely. Filed test indicates that fracture grouting greatly increases the bearing capacity of weathered rock in Xiamen Xiangan subsea tunneling and the conclusions of numerical simulation agrees well with the field test and grouting theory.


2008 ◽  
Vol 124 (10/11) ◽  
pp. 611-618 ◽  
Author(s):  
Takahiro FUNATSU ◽  
Qian LI ◽  
Norikazu SHIMIZU ◽  
Masahiro SETO ◽  
Kikuo MATSUI

Sign in / Sign up

Export Citation Format

Share Document