scholarly journals Hits and Lead Discovery in the Identification of New Drugs against the Trypanosomatidic Infections

Author(s):  
Theodora Calogeropoulou ◽  
George E. Magoulas ◽  
Ina Pöhner ◽  
Joanna Panecka-Hofman ◽  
Pasquale Linciano ◽  
...  
Keyword(s):  
2014 ◽  
Vol 58 (4) ◽  
pp. 2202-2210 ◽  
Author(s):  
Ranjan Behera ◽  
Sarah M. Thomas ◽  
Kojo Mensa-Wilmot

ABSTRACTHuman African trypanosomiasis (HAT) is caused by the protozoanTrypanosoma brucei. New drugs are needed to treat HAT because of undesirable side effects and difficulties in the administration of the antiquated drugs that are currently used. In human proliferative diseases, protein tyrosine kinase (PTK) inhibitors (PTKIs) have been developed into drugs (e.g., lapatinib and erlotinib) by optimization of a 4-anilinoquinazoline scaffold. Two sets of facts raise a possibility that drugs targeted against human PTKs could be “hits” for antitrypanosomal lead discoveries. First, trypanosome protein kinases bind some drugs, namely, lapatinib, CI-1033, and AEE788. Second, the pan-PTK inhibitor tyrphostin A47 blocks the endocytosis of transferrin and inhibits trypanosome replication. Following up on these concepts, we performed a focused screen of various PTKI drugs as possible antitrypanosomal hits. Lapatinib, CI-1033, erlotinib, axitinib, sunitinib, PKI-166, and AEE788 inhibited the replication of bloodstreamT. brucei, with a 50% growth inhibitory concentration (GI50) between 1.3 μM and 2.5 μM. Imatinib had no effect (i.e., GI50> 10 μM). To discover leads among the drugs, a mouse model of HAT was used in a proof-of-concept study. Orally administered lapatinib reduced parasitemia, extended the survival of all treated mice, and cured the trypanosomal infection in 25% of the mice. CI-1033 and AEE788 reduced parasitemia and extended the survival of the infected mice. On the strength of these data and noting their oral bioavailabilities, we propose that the 4-anilinoquinazoline and pyrrolopyrimidine scaffolds of lapatinib, CI-1033, and AEE788 are worth optimizing againstT. bruceiin medicinal chemistry campaigns (i.e., scaffold repurposing) to discover new drugs against HAT.


2011 ◽  
Vol 39 (5) ◽  
pp. 1365-1370 ◽  
Author(s):  
Louisa J. Bellis ◽  
Ruth Akhtar ◽  
Bissan Al-Lazikani ◽  
Francis Atkinson ◽  
A. Patricia Bento ◽  
...  

The challenge of translating the huge amount of genomic and biochemical data into new drugs is a costly and challenging task. Historically, there has been comparatively little focus on linking the biochemical and chemical worlds. To address this need, we have developed ChEMBL, an online resource of small-molecule SAR (structure–activity relationship) data, which can be used to support chemical biology, lead discovery and target selection in drug discovery. The database contains the abstracted structures, properties and biological activities for over 700000 distinct compounds and in excess of more than 3 million bioactivity records abstracted from over 40000 publications. Additional public domain resources can be readily integrated into the same data model (e.g. PubChem BioAssay data). The compounds in ChEMBL are largely extracted from the primary medicinal chemistry literature, and are therefore usually ‘drug-like’ or ‘lead-like’ small molecules with full experimental context. The data cover a significant fraction of the discovery of modern drugs, and are useful in a wide range of drug design and discovery tasks. In addition to the compound data, ChEMBL also contains information for over 8000 protein, cell line and whole-organism ‘targets’, with over 4000 of those being proteins linked to their underlying genes. The database is searchable both chemically, using an interactive compound sketch tool, protein sequences, family hierarchies, SMILES strings, compound research codes and key words, and biologically, using a variety of gene identifiers, protein sequence similarity and protein families. The information retrieved can then be readily filtered and downloaded into various formats. ChEMBL can be accessed online at https://www.ebi.ac.uk/chembldb.


2019 ◽  
Vol 476 (24) ◽  
pp. 3687-3704 ◽  
Author(s):  
Aphrodite T. Choumessi ◽  
Manuel Johanns ◽  
Claire Beaufay ◽  
Marie-France Herent ◽  
Vincent Stroobant ◽  
...  

Root extracts of a Cameroon medicinal plant, Dorstenia psilurus, were purified by screening for AMP-activated protein kinase (AMPK) activation in incubated mouse embryo fibroblasts (MEFs). Two isoprenylated flavones that activated AMPK were isolated. Compound 1 was identified as artelasticin by high-resolution electrospray ionization mass spectrometry and 2D-NMR while its structural isomer, compound 2, was isolated for the first time and differed only by the position of one double bond on one isoprenyl substituent. Treatment of MEFs with purified compound 1 or compound 2 led to rapid and robust AMPK activation at low micromolar concentrations and increased the intracellular AMP:ATP ratio. In oxygen consumption experiments on isolated rat liver mitochondria, compound 1 and compound 2 inhibited complex II of the electron transport chain and in freeze–thawed mitochondria succinate dehydrogenase was inhibited. In incubated rat skeletal muscles, both compounds activated AMPK and stimulated glucose uptake. Moreover, these effects were lost in muscles pre-incubated with AMPK inhibitor SBI-0206965, suggesting AMPK dependency. Incubation of mouse hepatocytes with compound 1 or compound 2 led to AMPK activation, but glucose production was decreased in hepatocytes from both wild-type and AMPKβ1−/− mice, suggesting that this effect was not AMPK-dependent. However, when administered intraperitoneally to high-fat diet-induced insulin-resistant mice, compound 1 and compound 2 had blood glucose-lowering effects. In addition, compound 1 and compound 2 reduced the viability of several human cancer cells in culture. The flavonoids we have identified could be a starting point for the development of new drugs to treat type 2 diabetes.


2008 ◽  
Vol 39 (9) ◽  
pp. 14-15
Author(s):  
BRUCE JANCIN
Keyword(s):  

2005 ◽  
Vol 38 (11) ◽  
pp. 12
Author(s):  
THOMAS WAKEFIELD
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document