Two isoprenylated flavonoids from Dorstenia psilurus activate AMPK, stimulate glucose uptake, inhibit glucose production and lower glycemia

2019 ◽  
Vol 476 (24) ◽  
pp. 3687-3704 ◽  
Author(s):  
Aphrodite T. Choumessi ◽  
Manuel Johanns ◽  
Claire Beaufay ◽  
Marie-France Herent ◽  
Vincent Stroobant ◽  
...  

Root extracts of a Cameroon medicinal plant, Dorstenia psilurus, were purified by screening for AMP-activated protein kinase (AMPK) activation in incubated mouse embryo fibroblasts (MEFs). Two isoprenylated flavones that activated AMPK were isolated. Compound 1 was identified as artelasticin by high-resolution electrospray ionization mass spectrometry and 2D-NMR while its structural isomer, compound 2, was isolated for the first time and differed only by the position of one double bond on one isoprenyl substituent. Treatment of MEFs with purified compound 1 or compound 2 led to rapid and robust AMPK activation at low micromolar concentrations and increased the intracellular AMP:ATP ratio. In oxygen consumption experiments on isolated rat liver mitochondria, compound 1 and compound 2 inhibited complex II of the electron transport chain and in freeze–thawed mitochondria succinate dehydrogenase was inhibited. In incubated rat skeletal muscles, both compounds activated AMPK and stimulated glucose uptake. Moreover, these effects were lost in muscles pre-incubated with AMPK inhibitor SBI-0206965, suggesting AMPK dependency. Incubation of mouse hepatocytes with compound 1 or compound 2 led to AMPK activation, but glucose production was decreased in hepatocytes from both wild-type and AMPKβ1−/− mice, suggesting that this effect was not AMPK-dependent. However, when administered intraperitoneally to high-fat diet-induced insulin-resistant mice, compound 1 and compound 2 had blood glucose-lowering effects. In addition, compound 1 and compound 2 reduced the viability of several human cancer cells in culture. The flavonoids we have identified could be a starting point for the development of new drugs to treat type 2 diabetes.

Author(s):  
E. A. Elfont ◽  
R. B. Tobin ◽  
D. G. Colton ◽  
M. A. Mehlman

Summary5,-5'-diphenyl-2-thiohydantoin (DPTH) is an effective inhibitor of thyroxine (T4) stimulation of α-glycerophosphate dehydrogenase in rat liver mitochondria. Because this finding indicated a possible tool for future study of the mode of action of thyroxine, the ultrastructural and biochemical effects of DPTH and/or thyroxine on rat liver mere investigated.Rats were fed either standard or DPTH (0.06%) diet for 30 days before T4 (250 ug/kg/day) was injected. Injection of T4 occurred daily for 10 days prior to sacrifice. After removal of the liver and kidneys, part of the tissue was frozen at -50°C for later biocheailcal analyses, while the rest was prefixed in buffered 3.5X glutaraldehyde (390 mOs) and post-fixed in buffered 1Z OsO4 (376 mOs). Tissues were embedded in Araldlte 502 and the sections examined in a Zeiss EM 9S.Hepatocytes from hyperthyroid rats (Fig. 2) demonstrated enlarged and more numerous mitochondria than those of controls (Fig. 1). Glycogen was almost totally absent from the cytoplasm of the T4-treated rats.


Author(s):  
Olga A. Gonchar ◽  
Valentina I. Nosar ◽  
Larisa. V. Bratus ◽  
I. N. Tymchenko ◽  
N. N. Steshenko ◽  
...  

2018 ◽  
Vol 21 (2) ◽  
pp. 125-137
Author(s):  
Jolanta Stasiak ◽  
Marcin Koba ◽  
Marcin Gackowski ◽  
Tomasz Baczek

Aim and Objective: In this study, chemometric methods as correlation analysis, cluster analysis (CA), principal component analysis (PCA), and factor analysis (FA) have been used to reduce the number of chromatographic parameters (logk/logkw) and various (e.g., 0D, 1D, 2D, 3D) structural descriptors for three different groups of drugs, such as 12 analgesic drugs, 11 cardiovascular drugs and 36 “other” compounds and especially to choose the most important data of them. Material and Methods: All chemometric analyses have been carried out, graphically presented and also discussed for each group of drugs. At first, compounds’ structural and chromatographic parameters were correlated. The best results of correlation analysis were as follows: correlation coefficients like R = 0.93, R = 0.88, R = 0.91 for cardiac medications, analgesic drugs, and 36 “other” compounds, respectively. Next, part of molecular and HPLC experimental data from each group of drugs were submitted to FA/PCA and CA techniques. Results: Almost all results obtained by FA or PCA, and total data variance, from all analyzed parameters (experimental and calculated) were explained by first two/three factors: 84.28%, 76.38 %, 69.71% for cardiovascular drugs, for analgesic drugs and for 36 “other” compounds, respectively. Compounds clustering by CA method had similar characteristic as those obtained by FA/PCA. In our paper, statistical classification of mentioned drugs performed has been widely characterized and discussed in case of their molecular structure and pharmacological activity. Conclusion: Proposed QSAR strategy of reduced number of parameters could be useful starting point for further statistical analysis as well as support for designing new drugs and predicting their possible activity.


2020 ◽  
Vol 16 (6) ◽  
pp. 784-795
Author(s):  
Krisnna M.A. Alves ◽  
Fábio José Bonfim Cardoso ◽  
Kathia M. Honorio ◽  
Fábio A. de Molfetta

Background:: Leishmaniosis is a neglected tropical disease and glyceraldehyde 3- phosphate dehydrogenase (GAPDH) is a key enzyme in the design of new drugs to fight this disease. Objective:: The present study aimed to evaluate potential inhibitors of GAPDH enzyme found in Leishmania mexicana (L. mexicana). Methods: A search for novel antileishmanial molecules was carried out based on similarities from the pharmacophoric point of view related to the binding site of the crystallographic enzyme using the ZINCPharmer server. The molecules selected in this screening were subjected to molecular docking and molecular dynamics simulations. Results:: Consensual analysis of the docking energy values was performed, resulting in the selection of ten compounds. These ligand-receptor complexes were visually inspected in order to analyze the main interactions and subjected to toxicophoric evaluation, culminating in the selection of three compounds, which were subsequently submitted to molecular dynamics simulations. The docking results showed that the selected compounds interacted with GAPDH from L. mexicana, especially by hydrogen bonds with Cys166, Arg249, His194, Thr167, and Thr226. From the results obtained from molecular dynamics, it was observed that one of the loop regions, corresponding to the residues 195-222, can be related to the fitting of the substrate at the binding site, assisting in the positioning and the molecular recognition via residues responsible for the catalytic activity. Conclusion:: he use of molecular modeling techniques enabled the identification of promising compounds as inhibitors of the GAPDH enzyme from L. mexicana, and the results obtained here can serve as a starting point to design new and more effective compounds than those currently available.


1977 ◽  
Vol 32 (9-10) ◽  
pp. 786-791 ◽  
Author(s):  
Josef Köhrle ◽  
Joachim Lüstorff ◽  
Eckhard Schlimme

Abstract 1. P1, P5-Bis-(5′-adenosyl)pentaphosphate (Ap5A) inhibits “soluble” adenylate kinase even when this enzyme is an integral part of the complete mitochondrion. The Ki is 10-5м , i. e. about two orders of magnitude higher than the inhibitor constants determined for the purified adenylate kinase of rabbit muscle and an enzyme preparation separated from the mitochondrial intermembrane space. The weaker inhibitory effect is due to a lower accessibility of the enzyme.2. As to be expected Ap5A which is of the “multisubstrate analogue”-type does not affect mito­ chondrial nucleoside diphosphate kinase.3. Though Ap5A owns the structural elements of both ATP and ADP it is not a substrate of the adenine nucleotide carrier, i.e. neither it is exchanged across the inner mitochondrial membrane nor specifically bound.4. Ap5A is not metabolized by rat liver mitochondria.


Sign in / Sign up

Export Citation Format

Share Document