Nonhistone Proteins and Nuclear Matrix Structures

Author(s):  
A. Oscar Pogo
1986 ◽  
Vol 102 (5) ◽  
pp. 1654-1665 ◽  
Author(s):  
E G Fey ◽  
G Krochmalnic ◽  
S Penman

The nonchromatin structure or matrix of the nucleus has been studied using an improved fractionation in concert with resinless section electron microscopy. The resinless sections show the nucleus of the intact cell to be filled with a dense network or lattice composed of soluble proteins and chromatin in addition to the structural nuclear constituents. In the first fractionation step, soluble proteins are removed by extraction with Triton X-100, and the dense nuclear lattice largely disappears. Chromatin and nonchromatin nuclear fibers are now sharply imaged. Nuclear constituents are further separated into three well-defined, distinct protein fractions. Chromatin proteins are those that require intact DNA for their association with the nucleus and are released by 0.25 M ammonium sulfate after internucleosomal DNA is cut with DNAase I. The resulting structure retains most heterogeneous nuclear ribonucleoprotein (hnRNP) and is designated the RNP-containing nuclear matrix. The proteins of hnRNP are those associated with the nucleus only if RNA is intact. These are released when nuclear RNA is briefly digested with RNAase A. Ribonuclease digestion releases 97% of the hnRNA and its associated proteins. These proteins correspond to the hnRNP described by Pederson (Pederson, T., 1974, J. Mol. Biol., 83:163-184) and are distinct from the proteins that remain in the ribonucleoprotein (RNP)-depleted nuclear matrix. The RNP-depleted nuclear matrix is a core structure that retains lamins A and C, the intermediate filaments, and a unique set of nuclear matrix proteins (Fey, E. G., K. M. Wan, and S. Penman, 1984, J. Cell Biol. 98:1973-1984). This core had been previously designated the nuclear matrix-intermediate filament scaffold and its proteins are a third, distinct, and nonoverlapping subset of the nuclear nonhistone proteins. Visualizing the nuclear matrix using resinless sections shows that nuclear RNA plays an important role in matrix organization. Conventional Epon-embedded electron microscopy sections show comparatively little of the RNP-containing and RNP-depleted nuclear matrix structure. In contrast, resinless sections show matrix interior to be a three-dimensional network of thick filaments bounded by the nuclear lamina. The filaments are covered with 20-30-nm electron dense particles which may contain the hnRNA. The large electron dense bodies, enmeshed in the interior matrix fibers, have the characteristic morphology of nucleoli. Treatment of the nuclear matrix with RNAase results in the aggregation of the interior fibers and the extensive loss of the 20-30-nm particles.(ABSTRACT TRUNCATED AT 400 WORDS)


2006 ◽  
Vol 175 (4S) ◽  
pp. 317-317
Author(s):  
Shahrokh F. Shariat ◽  
Michael Marberger ◽  
Yair Lotan ◽  
Marta Sanchez-Carbayo ◽  
Craig D. Zippe ◽  
...  

1994 ◽  
Vol 269 (36) ◽  
pp. 22894-22901
Author(s):  
M.J. Hendzel ◽  
J.M. Sun ◽  
H.Y. Chen ◽  
J.B. Rattner ◽  
J.R. Davie

1990 ◽  
Vol 265 (10) ◽  
pp. 5460-5465
Author(s):  
N Stuurman ◽  
A M Meijne ◽  
A J van der Pol ◽  
L de Jong ◽  
R van Driel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document