Dynamic deformation of a layered continuum surrounding a cylindrical or spherical cavity

Author(s):  
A Mioduchowski ◽  
P Janele
2020 ◽  
Vol 1 (1) ◽  
pp. 20-46 ◽  
Author(s):  
Mario Buchely ◽  
Alejandro Marañon

In recent years, Spherical Cavity Expansion (SCE) theory has been extensively utilized to model dynamic deformation processes related to indentation and penetration problems in many fields. In this review, the SCE theory is introduced by explaining the different mathematical features of this theory, its solution, and a potential application to model the penetration of a rigid penetrator into a deformable target. First, a chronologically literature review of the most common models used to study this kind of penetration problems is introduced, focusing on the SCE theory. Then, the engineering model of penetration is presented using the SCE approach. The model is then compared and validated with some FE numerical simulations and with previous penetration results. It is concluded that this engineering model based on the SCE theory can be utilized to predict the projectile deceleration and penetration depth into the semi-infinite and finite targets impacted by rigid penetrators.


2013 ◽  
Vol 20 (4) ◽  
pp. 555-564 ◽  
Author(s):  
Wojciech Moćko

Abstract The paper presents the results of the analysis of the striker shape impact on the shape of the mechanical elastic wave generated in the Hopkinson bar. The influence of the tensometer amplifier bandwidth on the stress-strain characteristics obtained in this method was analyzed too. For the purposes of analyzing under the computing environment ABAQUS / Explicit the test bench model was created, and then the analysis of the process of dynamic deformation of the specimen with specific mechanical parameters was carried out. Based on those tests, it was found that the geometry of the end of the striker has an effect on the form of the loading wave and the spectral width of the signal of that wave. Reduction of the striker end diameter reduces unwanted oscillations, however, adversely affects the time of strain rate stabilization. It was determined for the assumed test bench configuration that a tensometric measurement system with a bandwidth equal to 50 kHz is sufficient


Author(s):  
Isaac Maya ◽  
Craig Christy ◽  
Mohamad Dagher ◽  
Thomas Kim ◽  
J. Richard Williams

Sign in / Sign up

Export Citation Format

Share Document