Protein Targeting Pathways and Sorting Signals in Epithelial Cells

2001 ◽  
Author(s):  
Enrique Rodriguez-Boulan ◽  
Geri Kreitzer ◽  
David Cohen ◽  
Vera Bonilha ◽  
Anne Müsch
Nature ◽  
1995 ◽  
Vol 378 (6552) ◽  
pp. 96-98 ◽  
Author(s):  
Peter Scheiffele ◽  
Johan Peränen ◽  
Kai Simons

2001 ◽  
Vol 114 (18) ◽  
pp. 3323-3332 ◽  
Author(s):  
Joanna Rowe ◽  
Federico Calegari ◽  
Elena Taverna ◽  
Renato Longhi ◽  
Patrizia Rosa

SNARE (Soluble N-ethyl-maleimide sensitive factor Attachment protein Receptor) proteins assemble in tight core complexes, which promote fusion of carrier vesicles with target compartments. Members of this class of proteins are expressed in all eukaryotic cells and are distributed in distinct subcellular compartments. The molecular mechanisms underlying sorting of SNAREs to their physiological sites of action are still poorly understood. Here have we analyzed the transport of syntaxin1A in epithelial cells. In line with previous data we found that syntaxin1A is not transported to the plasma membrane, but rather is retained intracellularly when overexpressed in MDCK and Caco-2 cells. Its delivery to the cell surface is recovered after munc-18-1 cotransfection. Furthermore, overexpression of the ubiquitous isoform of munc-18, munc-18-2, is also capable of rescuing the transport of the t-SNARE. The interaction between syntaxin 1A and munc-18 occurs in the biosynthetic pathway and is required to promote the exit of the t-SNARE from the Golgi complex. This enabled us to investigate the targeting of syntaxin1A in polarized cells. Confocal analysis of polarized monolayers demonstrates that syntaxin1A is delivered to both the apical and basolateral domains independently of the munc-18 proteins used in the cotranfection experiments. In search of the mechanisms underlying syntaxin 1A sorting to the cell surface, we found that a portion of the protein is included in non-ionic detergent insoluble complexes. Our results indicate that the munc-18 proteins represent limiting but essential factors in the transport of syntaxin1A from the Golgi complex to the epithelial cell surface. They also suggest the presence of codominant apical and basolateral sorting signals in the syntaxin1A sequence.


1988 ◽  
Vol 107 (2) ◽  
pp. 471-479 ◽  
Author(s):  
M J Rindler ◽  
M G Traber

Caco-2 cells, derived from human colon, have the morphological, functional, and biochemical properties of small intestinal epithelial cells. After infection with enveloped viruses, influenza virions assembled at the apical plasma membrane while vesicular stomatitis virus (VSV) particles appeared exclusively at the basolateral membrane, similar to the pattern observed in virus-infected Madin-Darby canine kidney (MDCK). When grown in Millicell filter chamber devices and labeled with [35S]methionine, Caco-2 monolayers released all of their radiolabeled secretory products preferentially into the basal chamber. Among the proteins identified were apolipoproteins AI and E, transferrin, and alpha-fetoprotein. No proteins were observed to be secreted preferentially from the apical cell surface. The lysosomal enzyme beta-hexosaminidase was also secreted primarily from the basolateral surface of the cells in the presence or absence of lysosomotropic drugs or tunicamycin, which inhibit the targetting of lysosomal enzymes to lysosomes. Neither of these drug treatments significantly affected the polarized secretion of other nonlysosomal proteins. In addition, growth hormone (GH), which is released in a nonpolar fashion from MDCK cells, was secreted exclusively from the basolateral membrane after transfection of Caco-2 cells with GH cDNA in a pSV2-based expression vector. Similar results were obtained in transient expression experiments and after selection of permanently transformed Caco-2 cells expressing GH. Since both beta-hexosaminidase and GH would be expected to lack sorting signals for polarized exocytosis in epithelial cells, these results indicate that in intestinal cells, proteins transported via the basolateral secretory pathway need not have specific sorting signals.


2000 ◽  
Vol 278 (2) ◽  
pp. F192-F201 ◽  
Author(s):  
Dennis Brown

Epithelial cells in the kidney have highly specialized transport mechanisms that differ among the many tubule segments, and among the different cell types that are present in some regions. The purpose of this brief review is to examine some of the major intracellular mechanisms by which the membrane proteins that participate in these differentiated cellular functions are addressed, sorted, and delivered to specific membrane domains of epithelial cells. Unraveling these processes is important not only for our understanding of normal cellular function but is also critical for the interpretation of pathophysiological dysfunction in the context of newly generated molecular and cellular information concerning hereditary and acquired transporter abnormalities. Among the topics covered are sorting signals on proteins, role of the cytoskeleton, vesicle coat proteins, the fusion machinery, and exo- and endocytosis of recycling proteins. Examples of these events in renal epithelial cells are highlighted throughout this review and are related to the physiology of the kidney.


2009 ◽  
Vol 90 (10) ◽  
pp. 2474-2482 ◽  
Author(s):  
Nicole Runkler ◽  
Erik Dietzel ◽  
Mary Carsillo ◽  
Stefan Niewiesk ◽  
Andrea Maisner

The spread of virus infection within an organism is partially dictated by the receptor usage of the virus and can be influenced by sorting signals present in the viral glycoproteins expressed in infected cells. In previous studies, we have shown that the haemagglutinin (H) and fusion protein (F) of the measles virus (MV) vaccine strain MVEdm harbour tyrosine-dependent sorting signals which influence virus spread in both lymphocytes and epithelial cells to a similar degree. In contrast with the vaccine strain, MV wild-type virus does not use CD46 but CD150/SLAM and a not clearly identified molecule on epithelial cells as receptors. To determine differences in viral spread between vaccine and wild-type virus, we generated recombinant MV expressing glycoproteins of both the wild-type strain WTFb and the corresponding tyrosine mutants. In contrast with observations based on vaccine virus glycoproteins, mutations in wild-type virus H and F differently influenced cell-to-cell fusion and replication in polarized epithelia and lymphocytes. For wild-type H, our data suggest a key role of the cytoplasmic tyrosine signal for virus dissemination in vivo. It seems to be important for efficient virus spread between lymphocytes, while the tyrosine signal in the F protein gains importance in epithelial cells as both signals have to be intact to allow efficient spread of infection within epithelia.


1991 ◽  
Vol 112 (3) ◽  
pp. 365-376 ◽  
Author(s):  
P Arvan ◽  
J Lee

We have studied concurrent apical/basolateral and regulated/constitutive secretory targeting in filter-grown thyroid epithelial monolayers in vitro, by following the exocytotic routes of two newly synthesized endogenous secretory proteins, thyroglobulin (Tg) and p500. Tg is a regulated secretory protein as indicated by its acute secretory response to secretagogues. Without stimulation, pulse-labeled Tg exhibits primarily two kinetically distinct routes: less than or equal to 80% is released in an apical secretory phase which is largely complete by 6-10 h, with most of the remaining Tg retained in intracellular storage from which delayed apical discharge is seen. The rapid export observed for most Tg is unlikely to be because of default secretion, since its apical polarity is preserved even during the period (less than or equal to 10 h) when p500 is released basolaterally by a constitutive pathway unresponsive to secretagogues. p500 also exhibits a second, kinetically distinct secretory route: at chase times greater than 10 h, a residual fraction (less than or equal to 8%) of p500 is secreted with an apical preponderance similar to that of Tg. It appears that this fraction of p500 has failed to be excluded from the regulated pathway, which has a predetermined apical polarity. From these data we hypothesize that a targeting hierarchy may exist in thyroid epithelial cells such that initial sorting to the regulated pathway may be a way of insuring apical surface delivery from one of two possible exocytotic routes originating in the immature storage compartment.


1992 ◽  
Vol 102 (3) ◽  
pp. 495-504 ◽  
Author(s):  
K.L. Soole ◽  
J. Hall ◽  
M.A. Jepson ◽  
G.P. Hazlewood ◽  
H.J. Gilbert ◽  
...  

The constitutive (or default) pathway for protein secretion was investigated in two epithelial cells, Madin-Darby canine kidney (MDCK) and human colonic adenocarcinoma (Caco-2), using a bacterial enzyme. The choice of a bacterial protein was based on the requirement to identify a protein devoid of sorting signals. The sorting of a bacterial endoglucanase derived from Clostridium thermocellum, endoglucanase E, from stably transfected MDCK and Caco-2 cells was examined. The choice of a bacterial endoglucanase for these studies has advantages of simple, sensitive and quantitative detection, while higher eukaryotic cells do not express endoglucanase activity. Both cell lines secreted a 50 kDa form of the bacterial protein, while smaller intracellular forms were also observed. In polarized layers of MDCK cells the endoglucanase was secreted into both membrane domains in the ratio 62% apical and 38% basolateral. In Caco-2 cells secretion was predominantly, 70%, through the basolateral membrane. These results define the constitutive pathway for protein secretion in these two model epithelial cells.


2001 ◽  
Vol 12 (5) ◽  
pp. 1329-1340 ◽  
Author(s):  
Samuel W. Straight ◽  
Liguang Chen ◽  
David Karnak ◽  
Ben Margolis

To investigate the targeting mechanism for proteins bound to the mammalian Lin-7 (mLin-7) PDZ domain, we created receptor protein chimeras composed of the carboxyl-terminal amino acids of LET-23 fused to truncated nerve growth factor receptor/P75. mLin-7 bound to the chimera with a wild-type LET-23 carboxyl-terminal tail (P75t-Let23WT), but not a mutant tail (P75t-Let23MUT). In Madin-Darby canine kidney (MDCK) cells, P75t-Let23WT localized to the basolateral plasma membrane domain, whereas P75t-Let23MUT remained apical. Furthermore, mutant mLin-7 constructs acted as dominant interfering proteins and inhibited the basolateral localization of P75t-Let23WT. The mechanisms for this differential localization were examined further, and, initially, we found that P75t-Let23WT and P75t-Let23MUT were delivered equally to the apical and basolateral plasma membrane domains. Although basolateral retention of P75t-Let23WT, but not P75t-Let23MUT, was observed, the greatest difference in receptor localization was seen in the rapid trafficking of P75t-Let23WT to the basolateral plasma membrane domain after endocytosis, whereas P75t-Let23MUT was degraded in lysosomes, indicating that mLin-7 binding can alter the fate of endocytosed proteins. Altogether, these data support a model for basolateral protein targeting in mammalian epithelial cells dependent on protein–protein interactions with mLin-7, and also suggest a dynamic role for mLin-7 in endosomal sorting.


Sign in / Sign up

Export Citation Format

Share Document