apical polarity
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 10 (48) ◽  
Author(s):  
Yuu Hirose ◽  
Mitsunori Katayama

Calothrix sp. strain PCC 7716 is a filamentous cyanobacterium whose morphology is tapered, with basal-apical polarity. The apical filament shows positive phototropism toward white light or blue light. To elucidate the molecular basis of the phototropism, we determined the complete genome sequence of a spontaneous mutant of this strain that has a thin sheath and is suitable for genomic DNA extraction.


2021 ◽  
Vol 10 (39) ◽  
Author(s):  
Yuu Hirose ◽  
Mitsunori Katayama

Rivularia sp. strain IAM M-261 is a filamentous cyanobacterium with tapering morphology and basal-apical polarity. The apical filament of this cyanobacterium exhibits positive phototropism toward visible light. To elucidate the molecular basis for this phototropism, we determined the draft genome sequence of this strain.


10.33540/822 ◽  
2021 ◽  
Author(s):  
◽  
María Victoria García Castiglioni
Keyword(s):  

2021 ◽  
pp. mbc.E21-01-0001
Author(s):  
Indrajyoti Indra ◽  
Regina B. Troyanovsky ◽  
Kathleen J. Green ◽  
Sergey M. Troyanovsky

Desmosomes (DSMs) together with Adherens Junctions (AJs) and Tight Junctions (TJs) constitute the apical cell junctional complex (AJC). While the importance of the apical and basolateral polarity machinery in the organization of AJs and TJs is well-established, how DSMs are positioned within the AJC is not understood. Here we use highly polarized DLD1 cells as a model to address how DSMs integrate into the AJC. We found that knockout of the desmosomal ARM protein Pkp3, but not other major DSM proteins, uncouples DSMs from AJC without blocking DSM assembly. DLD1 cells also exhibit a prominent extra-DSM pool of Pkp3, concentrated in tricellular (tC) contacts. Probing distinct apicobasal polarity pathways revealed that neither the DSM's association with AJC, nor the extra-DSM pool of Pkp3 are abolished in cells with defects in Scrib module proteins responsible for basolateral membrane development. However, a loss of the apical polarity protein, Par3 completely eliminates the extra-DSM pool of Pkp3 and disrupts AJC localization of desmosomes, dispersing these junctions along the entire length of cell-cell contacts. Our data are consistent with a model whereby Par3 facilitates DSM assembly within the AJC, controlling the availability of an assembly competent pool of Pkp3 stored in tC contacts.


2021 ◽  
pp. ASN.2020071050
Author(s):  
Michael Mysh ◽  
John S. Poulton

BackgroundPodocyte slit diaphragms (SDs) are intercellular junctions that function as size-selective filters, excluding most proteins from urine. Abnormalities in SDs cause proteinuria and nephrotic syndrome. Podocytes exhibit apicobasal polarity, which can affect fundamental aspects of cell biology, including morphology, intercellular junction formation, and asymmetric protein distribution along the plasma membrane. Apical polarity protein mutations cause nephrotic syndrome, and data suggest apical polarity proteins regulate SD formation. However, there is no evidence that basolateral polarity proteins regulate SDs. Thus, the role of apicobasal polarity in podocytes remains unclear.MethodsGenetic manipulations and transgenic reporters determined the effects of disrupting apicobasal polarity proteins in Drosophila nephrocytes, which have SDs similar to those of mammalian podocytes. Confocal and electron microscopy were used to characterize SD integrity after loss of basolateral polarity proteins, and genetic-interaction studies illuminated relationships among apicobasal polarity proteins.ResultsThe study identified four novel regulators of nephrocyte SDs: Dlg, Lgl, Scrib, and Par-1. These proteins comprise the basolateral polarity module and its effector kinase. The data suggest these proteins work together, with apical polarity proteins, to regulate SDs by promoting normal endocytosis and trafficking of SD proteins.ConclusionsGiven the recognized importance of apical polarity proteins and SD protein trafficking in podocytopathies, the findings connecting basolateral polarity proteins to these processes significantly advance our understanding of SD regulation.


Author(s):  
Stefanie Heiden ◽  
Rebecca Siwek ◽  
Marie-Luise Lotz ◽  
Sarah Borkowsky ◽  
Rita Schröter ◽  
...  

AbstractApical-basal polarity is a key feature of most epithelial cells and it is regulated by highly conserved protein complexes. In mammalian podocytes, which emerge from columnar epithelial cells, this polarity is preserved and the tight junctions are converted to the slit diaphragms, establishing the filtration barrier. In Drosophila, nephrocytes show several structural and functional similarities with mammalian podocytes and proximal tubular cells. However, in contrast to podocytes, little is known about the role of apical-basal polarity regulators in these cells. In this study, we used expansion microscopy and found the apical polarity determinants of the PAR/aPKC and Crb-complexes to be predominantly targeted to the cell cortex in proximity to the nephrocyte diaphragm, whereas basolateral regulators also accumulate intracellularly. Knockdown of PAR-complex proteins results in severe endocytosis and nephrocyte diaphragm defects, which is due to impaired aPKC recruitment to the plasma membrane. Similar, downregulation of most basolateral polarity regulators disrupts Nephrin localization but had surprisingly divergent effects on endocytosis. Our findings suggest that morphology and slit diaphragm assembly/maintenance of nephrocytes is regulated by classical apical-basal polarity regulators, which have distinct functions in endocytosis.


FEBS Journal ◽  
2021 ◽  
Author(s):  
Eleanor Martin ◽  
Rossana Girardello ◽  
Gunnar Dittmar ◽  
Alexander Ludwig

Development ◽  
2020 ◽  
Vol 147 (22) ◽  
pp. dev184457
Author(s):  
Yumei Hao ◽  
Yao Zhou ◽  
Yinhui Yu ◽  
Mingjie Zheng ◽  
Kechao Weng ◽  
...  

ABSTRACTAdherens junction remodeling regulated by apical polarity proteins constitutes a major driving force for tissue morphogenesis, although the precise mechanism remains inconclusive. Here, we report that, in zebrafish, the Crumbs complex component MPP5a interacts with small GTPase Rab11 in Golgi to transport cadherin and Crumbs components synergistically to the apical domain, thus establishing apical epithelial polarity and adherens junctions. In contrast, Par complex recruited by MPP5a is incapable of interacting with Rab11 but might assemble cytoskeleton to facilitate cadherin exocytosis. In accordance, dysfunction of MPP5a induces an invasive migration of epithelial cells. This adherens junction remodeling pattern is frequently observed in zebrafish lens epithelial cells and neuroepithelial cells. The data identify an unrecognized MPP5a-Rab11 complex and describe its essential role in guiding apical polarization and zonula adherens formation in epithelial cells.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Prateek Arora ◽  
Shivali Dongre ◽  
Renuka Raman ◽  
Mahendra Sonawane

The epidermis, a multilayered epithelium, surrounds and protects the vertebrate body. It develops from a bilayered epithelium formed of the outer periderm and underlying basal epidermis. How apicobasal polarity is established in the developing epidermis has remained poorly understood. We show that both the periderm and the basal epidermis exhibit polarised distribution of adherens junctions in zebrafish. aPKC, an apical polarity regulator, maintains the robustness of polarisation of E-cadherin- an adherens junction component- in the periderm. E-cadherin in one layer controls the localisation of E-cadherin in the second layer in a layer non-autonomous manner. Importantly, E-cadherin controls the localisation and levels of Lgl, a basolateral polarity regulator, in a layer autonomous as well non-autonomous manner. Since periderm formation from the enveloping layer precedes the formation of the basal epidermis, our analyses suggest that peridermal polarity, initiated by aPKC, is transduced in a stepwise manner by E-cadherin to the basal layer.


Sign in / Sign up

Export Citation Format

Share Document