Friction of Elastomers against Hydrophobic and Hydrophilic Surfaces

2008 ◽  
pp. 263-274
Keyword(s):  
2009 ◽  
Vol 86 (4-6) ◽  
pp. 1350-1353 ◽  
Author(s):  
Dong Hwan Shin ◽  
Seong Hyuk Lee ◽  
Jung-Yeul Jung ◽  
Jung Yul Yoo

2021 ◽  
Vol 118 (41) ◽  
pp. e2104975118
Author(s):  
Mengyue Sun ◽  
Nityanshu Kumar ◽  
Ali Dhinojwala ◽  
Hunter King

Thermodynamics tells us to expect underwater contact between two hydrophobic surfaces to result in stronger adhesion compared to two hydrophilic surfaces. However, the presence of water changes not only energetics but also the dynamic process of reaching a final state, which couples solid deformation and liquid evacuation. These dynamics can create challenges for achieving strong underwater adhesion/friction, which affects diverse fields including soft robotics, biolocomotion, and tire traction. Closer investigation, requiring sufficiently precise resolution of film evacuation while simultaneously controlling surface wettability, has been lacking. We perform high-resolution in situ frustrated total internal reflection imaging to track underwater contact evolution between soft-elastic hemispheres of varying stiffness and smooth–hard surfaces of varying wettability. Surprisingly, we find the exponential rate of water evacuation from hydrophobic–hydrophobic (adhesive) contact is three orders of magnitude lower than that from hydrophobic–hydrophilic (nonadhesive) contact. The trend of decreasing rate with decreasing wettability of glass sharply changes about a point where thermodynamic adhesion crosses zero, suggesting a transition in mode of evacuation, which is illuminated by three-dimensional spatiotemporal height maps. Adhesive contact is characterized by the early localization of sealed puddles, whereas nonadhesive contact remains smooth, with film-wise evacuation from one central puddle. Measurements with a human thumb and alternatively hydrophobic/hydrophilic glass surface demonstrate practical consequences of the same dynamics: adhesive interactions cause instability in valleys and lead to a state of more trapped water and less intimate solid–solid contact. These findings offer interpretation of patterned texture seen in underwater biolocomotive adaptations as well as insight toward technological implementation.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Sorin-Cristian Vlădescu ◽  
Carmine Putignano ◽  
Nigel Marx ◽  
Tomas Keppens ◽  
Tom Reddyhoff ◽  
...  

New apparatus is described to simulate a compliant seal interface, allowing the percolation of liquid to be viewed by a fluorescence microscope. A model, based on the boundary element (BE) methodology, is used to provide a theoretical explanation of the observed behavior. The impact of contact pressure, roughness, and surface energy on percolation rates are characterized. For hydrophilic surfaces, percolation will always occur provided a sufficient number of roughness length scales are considered. However, for hydrophobic surfaces, the inlet pressure must overcome the capillary pressure exerted at the minimum channel section before flow can occur.


2011 ◽  
Vol 440 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Thilo Bracht ◽  
Flávia Figueiredo de Rezende ◽  
Jörg Stetefeld ◽  
Lydia M. Sorokin ◽  
Johannes A. Eble

The α2β1 antagonist rhodocetin from Calloselasma rhodostoma is a heterotetrameric CLRP (C-type lectin-related protein) consisting of four distinct chains, α, β, γ and δ. Via their characteristic domain-swapping loops, the individual chains form two subunits, αβ and γδ. To distinguish the four chains which share similar molecular masses and high sequence homologies, we generated 11 mAbs (monoclonal antibodies) with different epitope specificities. Four groups of distinct mAbs were generated: the first targeted the rhodocetin β chain, the second group bound to the αβ subunit mostly in a conformation-dependent manner, the third group recognized the γδ subunit only when separated from the αβ subunit, whereas a fourth group interacted with the γδ subunit both in the heterotetrameric molecule and complexed with the integrin α2 A-domain. Using the specific mAbs, we have shown that the rhodocetin heterotetramer dissociates into the αβ and γδ subunit upon binding to the integrin α2 A-domain at both the molecular and cellular levels. After dissociation, the γδ subunit firmly interacts with the α2β1 integrin, thereby blocking it, whereas the rhodocetin αβ subunit is released from the complex. The small molecular interface between the αβ and γδ subunits within rhodocetin is mostly mediated by charged residues, which causes the two dissociated subunits to have hydrophilic surfaces.


Author(s):  
Kripa K. Varanasi ◽  
Tao Deng

Heterogeneous nucleation of water plays an important role in wide range of natural and industrial processes. Though heterogeneous nucleation of water is ubiquitous and everyday experience, spatial control of this important phenomenon is extremely difficult. Here we show, for the first time, that spatial control in the heterogeneous nucleation of water can be achieved by manipulating the local nucleation energy barrier and nucleation rate via the modification of the local intrinsic wettability of a surface by patterning hybrid hydrophobic-hydrophilic regions on a surface. Such ability to control water nucleation could address the condensation-related limitations of superhydrophobic surfaces, and has implications for efficiency enhancements in energy and desalination systems.


Langmuir ◽  
2002 ◽  
Vol 18 (21) ◽  
pp. 8056-8061 ◽  
Author(s):  
E. Bonaccurso ◽  
H.-J. Butt ◽  
V. Franz ◽  
K. Graf ◽  
M. Kappl ◽  
...  
Keyword(s):  

2010 ◽  
Vol 4 (4) ◽  
pp. 475-487 ◽  
Author(s):  
Zhongliang Liu ◽  
Lingyan Huang ◽  
Yujun Gou ◽  
Yaomin Liu

Sign in / Sign up

Export Citation Format

Share Document