Using stable isotopes to determine mineral bioavailability of functional foods

Author(s):  
S Abrams
2012 ◽  
Vol 82 (3) ◽  
pp. 144-147 ◽  
Author(s):  
Ibrahim Elmadfa ◽  
Alexa L. Meyer

A high-quality diet is one of the foundations of health and well-being. For a long time in human history, diet was chiefly a source of energy and macronutrients meant to still hunger and give the strength for work and activities that were in general much harder than nowadays. Only few persons could afford to emphasize enjoyment. In the assessment of quality, organoleptic properties were major criteria to detect spoilage and oxidative deterioration of food. Today, food hygiene is a quality aspect that is often taken for granted by consumers, despite its lack being at the origin of most food-borne diseases. The discovery of micronutrients entailed fundamental changes of the concept of diet quality. However, non-essential food components with additional health functions were still barely known or not considered important until recently. With the high burden of obesity and its associated diseases on the rise, affluent, industrialized countries have developed an increased interest in these substances, which has led to the development of functional foods to optimize special body functions, reduce disease risk, or even contribute to therapeutic approaches. Indeed, nowadays, high contents of energy, fat, and sugar are factors associated with a lower quality of food, and products with reduced amounts of these components are valued by many consumers. At the same time, enjoyment and convenience are important quality factors, presenting food manufacturers with the dilemma of reconciling low fat content and applicability with good taste and appealing appearance. Functional foods offer an approach to address this challenge. Deeper insights into nutrient-gene interactions may enable personalized nutrition adapted to the special needs of individuals. However, so far, a varied healthy diet remains the best basis for health and well-being.


2019 ◽  
Author(s):  
Marko J. Spasojevic ◽  
Sören Weber1

Stable carbon (C) and nitrogen (N) isotopes in plants are important indicators of plant water use efficiency and N acquisition strategies. While often regarded as being under environmental control, there is growing evidence that evolutionary history may also shape variation in stable isotope ratios (δ13C and δ15N) among plant species. Here we examined patterns of foliar δ13C and δ15N in alpine tundra for 59 species in 20 plant families. To assess the importance of environmental controls and evolutionary history, we examined if average δ13C and δ15N predictably differed among habitat types, if individual species exhibited intraspecific trait variation (ITV) in δ13C and δ15N, and if there were a significant phylogenetic signal in δ13C and δ15N. We found that variation among habitat types in both δ13C and δ15N mirrored well-known patterns of water and nitrogen limitation. Conversely, we also found that 40% of species exhibited no ITV in δ13C and 35% of species exhibited no ITV in δ15N, suggesting that some species are under stronger evolutionary control. However, we only found a modest signal of phylogenetic conservatism in δ13C and no phylogenetic signal in δ15N suggesting that shared ancestry is a weaker driver of tundra wide variation in stable isotopes. Together, our results suggest that both evolutionary history and local environmental conditions play a role in determining variation in δ13C and δ15N and that considering both factors can help with interpreting isotope patterns in nature and with predicting which species may be able to respond to rapidly changing environmental conditions.


Author(s):  
J. BERRY, ◽  
C. COOK, ◽  
T.F. DOMINGUES, ◽  
J. EHLERINGER, ◽  
L. FLANAGAN, ◽  
...  

2020 ◽  
Vol 637 ◽  
pp. 225-235 ◽  
Author(s):  
MA Ladds ◽  
MH Pinkerton ◽  
E Jones ◽  
LM Durante ◽  
MR Dunn

Marine food webs are structured, in part, by predator gape size. Species found in deep-sea environments may have evolved such that they can consume prey of a wide range of sizes, to maximise resource intake in a low-productivity ecosystem. Estimates of gape size are central to some types of ecosystem model that determine which prey are available to predators, but cannot always be measured directly. Deep-sea species are hypothesized to have larger gape sizes than shallower-water species relative to their body size and, because of pronounced adaptive foraging behaviour, show only a weak relationship between gape size and trophic level. Here we present new data describing selective morphological measurements and gape sizes of 134 osteichthyan and chondrichthyan species from the deep sea (200-1300 m) off New Zealand. We describe how gape size (height, width and area) varied with factors including fish size, taxonomy (class and order within a class) and trophic level estimated from stable isotopes. For deep-sea species, there was a strong relationship between gape size and fish size, better predicted by body mass than total length, which varied by taxonomic group. Results show that predictions of gape size can be made from commonly measured morphological variables. No relationship between gape size and trophic level was found, likely a reflection of using trophic level estimates from stable isotopes as opposed to the commonly used estimates from FishBase. These results support the hypothesis that deep-sea fish are generalists within their environment, including suspected scavenging, even at the highest trophic levels.


Sign in / Sign up

Export Citation Format

Share Document