Development of high-performance piezoelectric single crystals by using solid-state single crystal growth (SSCG) method

Author(s):  
Phan Gia Le ◽  
Huyen Tran Tran ◽  
Jong-Sook Lee ◽  
John G. Fisher ◽  
Hwang-Pill Kim ◽  
...  

AbstractCeramics based on (Na1/2B1/2)TiO3 are promising candidates for actuator applications because of large strains generated by an electric field-induced phase transition. For example, the (1−x)(Na1/2Bi1/2)TiO3-xSrTiO3 system exhibits a morphotropic phase boundary at x = 0.2–0.3, leading to high values of inverse piezoelectric constant d*33, which can be further improved by the use of single crystals. In our previous work, single crystals of (Na1/2B1/2)TiO3-SrTiO3 and (Na1/2B1/2)TiO3-CaTiO3 were grown by the solid state crystal growth technique. Growth in the (Na1/2B1/2)TiO3-SrTiO3 system was sluggish whereas the (Na1/2B1/2)TiO3-CaTiO3 single crystals grew well. In the present work, 0.8(Na1/2Bi1/2)TiO3-0.2(Sr1−xCax)TiO3 single crystals (with x = 0.0, 0.1, 0.2, 0.3, 0.4) were produced by the solid state crystal growth technique in an attempt to improve crystal growth rate. The dependence of mean matrix grain size, single crystal growth distance, and electrical properties on the Ca concentration was investigated in detail. These investigations indicated that at x = 0.3 the matrix grain growth was suppressed and the driving force for single crystal growth was enhanced. Replacing Sr with Ca increased the shoulder temperature Ts and temperature of maximum relative permittivity Tmax, causing a decrease in inverse piezoelectric properties and a change from normal to incipient ferroelectric behavior.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2357 ◽  
Author(s):  
Le ◽  
Fisher ◽  
Moon

The (1−x)(Na1/2Bi1/2)TiO3-xSrTiO3 (NBT-100xST) system is a possible lead-free candidate for actuator applications because of its excellent strain vs. electric field behaviour. Use of single crystals instead of polycrystalline ceramics may lead to further improvement in piezoelectric properties but work on single crystal growth in this system is limited. In particular, the effect of composition on single crystal growth has yet to be studied. In this work, single crystals of (NBT-100xST) with x = 0.00, 0.05, 0.10 and 0.20 were grown using the method of Solid State Crystal Growth. [001]-oriented SrTiO3 single crystal seeds were embedded in (NBT-100xST) ceramic powder, which was then pressed to form pellets and sintered at 1200 °C for 5 min–50 h. Single crystal growth rate, matrix grain growth rate and sample microstructure were examined using scanning and transmission electron microscopy. The results indicate that the highest single crystal growth rate was obtained at x = 0.20. The mixed control theory of grain growth is used to explain the single crystal and matrix grain growth behaviour.


2008 ◽  
Vol 01 (02) ◽  
pp. 127-132 ◽  
Author(s):  
THOMAS RICHTER ◽  
CARSTEN SCHUH ◽  
RALF MOOS ◽  
ENDER SUVACI

In the field of high-performance piezoelectric materials, PMN-PT single crystals and textured ceramics have been attracting increased research interest for several years. On the other hand, the growth of single crystals from melt for PZT-based compositions is impossible due to its incongruent melting behavior. In order to obtain the characteristics of pure single crystal PZT as closely as possible, the PZT must be textured by secondary recrystallization of introduced seeds in a fine-grained matrix. Zirconium was therefore added to a PMN-PT-ceramic with 32 mol% PT ( Pb ( Mg 1/3 Nb 2/3)0.68 Ti 0.32 O 3) in order to obtain a PMN-PZT-ceramic with 37 mol% PT and 21 mol% PZ ( Pb ( Mg 1/3 Nb 2/3)0.42( Ti 0.638 Zr 0.362)0.58 O 3). Initially, the growth mechanism of (001)-oriented BaTiO 3 (BT) single crystals in those matrices was investigated. The piezoelectric single crystals were produced via a process that starts with the hot pressing of a BT single crystal in cold isostatically pressed ceramics, followed by an additional sintering step in order to achieve a secondary recrystallization. The measured growth lengths in PMN-PT and PMN-PZT matrices were up to 140 μm and 65 μm, respectively. Having developed this understanding, both ceramics were textured via the templated grain growth (TGG) process by using (001)-oriented BT templates. Sintering of templated grain bodies resulted in template growth into the matrix to produce textured ceramics with Lotgering factors up to 0.99 for both compositions. In textured samples unipolar strain s33 was enhanced by a factor of up to 1.8 compared to randomly oriented ceramics. By contrast, BT single crystal growth in an alternative PZT matrix with NdMn doping was not successful. Hence, in the present work, growth experiments in this NdMn -doped PZT were first performed using PZT fibers of similar composition as seeds. Growth of the fiber diameter of up to 100 μm was observed in that matrix.


2007 ◽  
Vol 336-338 ◽  
pp. 33-35
Author(s):  
Ke Pi Chen ◽  
Jin Song Pan ◽  
Xiao Wen Zhang

A small piece of <110> orientated relaxor-based ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals was embedded in Pb(Mg1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-PbTiO3 (PMN-PNN-PT) polycrystalline matrix to form the fully dense disk by spark plasma sintering (SPS) technique. Specimens were subsequently annealed to promote the boundary migration of the template single-crystal through a process termed as solid-state single crystal growth. It was found that the addition of excess 5 wt% PbO can promote the crystal growth, and the 2D morphology with V-shaped single crystals of PMN-PNN-PT were also observed. The possible growth mechanism was discussed.


Ceramist ◽  
2021 ◽  
Vol 24 (3) ◽  
pp. 273-285
Author(s):  
Ho-Yong LEE

Crystallographically engineered Relaxor-PT single crystals, specifically PMN-PT (Generation I) and PIN-PMN-PT/PMN-PZT (Generation II), offer much higher piezoelectric and electromechanical coupling coefficients (d33>1,500 pC/N, k33>0.9), when compared to polycrystalline PZT-5H ceramics (d33>600 pC/N, k33>0.75). Recently Ceracomp Co., Ltd. (www.ceracomp.com) has developed the solid-state single crystal growth (SSCG) technique and successfully fabricated Gen III PMN-PZT single crystals modified with acceptors or donors. The piezoelectric constants (d33) of (001) Gen III PMN-PZT single crystals were measured to be higher than 4,000 pC/N and thus about two times higher than those of PMN-PT/PZN-PT (Gen I) and PIN-PMN-PT/PMN-PZT (Gen II) single crystals. The Gen III PMN-PZT single crystals have been firstly applied to single crystal-epoxy composites, ultrasonic transducers, piezoelectric sensors, and piezoelectric actuators. In this paper we introduce the development of Gen III PMN-PZT single crystals, piezoelectric composites and multilayer single crystal actuators.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 378
Author(s):  
Li Zhao ◽  
Zhiwei Hu ◽  
Hanjie Guo ◽  
Christoph Geibel ◽  
Hong-Ji Lin ◽  
...  

We report on the synthesis and physical properties of cm-sized CoGeO3 single crystals grown in a high pressure mirror furnace at pressures of 80 bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly anisotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with TN∼33.5 K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions, which reveals the presence of sizable orbital moments in CoGeO3.


CrystEngComm ◽  
2015 ◽  
Vol 17 (13) ◽  
pp. 2682-2689 ◽  
Author(s):  
Pascal Schouwink ◽  
Adrien Ramel ◽  
Enrico Giannini ◽  
Radovan Černý

Single crystals of mixed-metal perovskite-type borohydride KCa(BH4)3 are prepared by using an easily generalized flux melting procedure based on eutectic borohydride systems.


Sign in / Sign up

Export Citation Format

Share Document