Multi-asperity contact model for wave propagation through rock joint

2004 ◽  
pp. 395-401
Author(s):  
Orestes Marangos ◽  
Anil Misra
2017 ◽  
Vol 65 (3) ◽  
pp. 391-398 ◽  
Author(s):  
P. Pawlus ◽  
R. Reizer ◽  
M. Wieczorowski ◽  
W. Żelasko

AbstractContact of random machined two-process steel textures with a smooth, flat steel surface is discussed in this paper. Two-process surfaces were machined by vapour blasting followed by lapping. An elastic-plastic contact model was applied, assuming distributed radius of asperities. Calculation procedures allowed the mean surface separation, contact pressure, and area fraction to be computed as functions of sampling intervals. Parameters characterizing the summits important in contact mechanics were calculated for different sampling intervals. Plasticity index of two-process textures was calculated using the modified procedure. It was found that the influence of sampling interval on normal contact depended on the rough surface ability to plastic deformation. The use of a traditional method of calculation overestimated the plasticity index. Peaks from plateau surface region governed contact characteristics of two-process surfaces.


2014 ◽  
Vol 988 ◽  
pp. 502-507 ◽  
Author(s):  
Shao Bo Chai ◽  
Jian Chun Li ◽  
Hai Bo Li ◽  
Ya Qun Liu

According to the displacement discontinuity method and the conservation of momentum at the wave fronts, analysis for cylindrical P-wave propagation across a linear elastic rock joint is carried out. Considering the energy variation for wave propagation in one medium, the wave propagation equation was derived and expressed in an iterative form. The transmission and reflection coefficients are then obtained from the equation. By verification, the results agree very well with those from the existing results.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
A. Megalingam ◽  
M. M. Mayuram

The study of the contact stresses generated when two surfaces are in contact plays a significant role in understanding the tribology of contact pairs. Most of the present contact models are based on the statistical treatment of the single asperity contact model. For a clear understanding about the elastic-plastic behavior of two rough surfaces in contact, comparative study involving the deterministic contact model, simplified multi-asperity contact model, and modified statistical model are undertaken. In deterministic contact model analysis, a three dimensional deformable rough surface pressed against a rigid flat surface is carried out using the finite element method in steps. A simplified multi-asperity contact model is developed using actual summit radii deduced from the rough surface, applying single asperity contact model results. The resultant contact parameters like contact load, contact area, and contact pressure are compared. The asperity interaction noticed in the deterministic contact model analysis leads to wide disparity in the results. Observing the elastic-plastic transition of the summits and the sharing of contact load and contact area among the summits, modifications are employed in single asperity statistical contact model approaches in the form of a correction factor arising from asperity interaction to reduce the variations. Consequently, the modified statistical contact model and simplified multi-asperity contact model based on actual summit radius results show improved agreement with the deterministic contact model results.


Author(s):  
A Megalingam ◽  
KS Hanumanth Ramji

Understanding the deformation behavior of rough surface contacts is essential to minimise the tribological consequences of contacts. Mostly, statistical, deterministic and fractal approaches are adopted to explore the contact of rough surfaces. In statistical approach, a single asperity contact model is developed and extended to the whole surface. In the present work, a deformable spherical asperity contact with a rigid flat is modeled and analysed by accounting the combined effect of Young’s modulus, Poisson’s ratio, yield strength and isotropic strain hardening rate using finite element method. The results reveal that the elastic, elastoplastic and plastic contact states are highly influenced by E/Y ratio and strain hardening rate followed by Poisson’s ratio. The dimensionless contact radius is an inadequate parameter to explore the combined effect of material properties. For all E/Y ratio and Poisson’s ratio, as the strain hardening rate increases, the dimensionless contact area decreases for the same dimensionless contact load at elastoplastic and fully plastic contact states. As the strain hardening rate increases, the fully plastic contact state is reached at low dimensionless interference compared to elastic perfectly plastic materials for all E/Y ratio and Poisson’s ratio. For a common elastic-plastic material, empirical relations are developed to calculate the contact load and contact area appropriately with E/Y ratio, Poisson’s ratio and interference ratio as input variables. It can be utilised to study the interaction of rough surface contacts for most of the practical materials.


2011 ◽  
Vol 90-93 ◽  
pp. 1998-2001
Author(s):  
Wei Dong Lei ◽  
Xue Feng He ◽  
Rui Chen

Three cases for 1-D wave propagation in ideal elastic rock, through single rock joint and multiple parallel rock joints are used to verify 1-D wave propagation in rocks. For the case for 1-D wave propagation through single rock joint, the magnitude of transmission coefficient obtained from UDEC results is compared with that obtained from the analytical solution. For 1-D wave propagation through multiple parallel joints, the magnitude of transmission coefficient obtained from UDEC results is compared with that obtained from the method of characteristics. For all these cases, UDEC results agree well with results from the analytical solutions and the method of characteristics. From these verification studies, it can be concluded that UDEC is capable of modeling 1-D dynamic problems in rocks.


2006 ◽  
Vol 128 (4) ◽  
pp. 898-903 ◽  
Author(s):  
Tianxiang Liu ◽  
Geng Liu ◽  
Qin Xie ◽  
Q. Jane Wang

When contact problems are solved by numerical approaches, a surface profile is usually described by a series of discrete nodes with the same intervals along a coordinate axis. Contact computation based on roughness datum mesh may be time consuming. An adaptive-surface elasto-plastic asperity contact model is presented in this paper. Such a model is developed in order to reduce the computing time by removing the surface nodes that have little influence on the contact behavior of rough surfaces. The nodes to be removed are determined by a prescribed threshold. The adaptive-surface asperity contact model is solved by means of the element-free Galerkin-finite element coupling method because of its flexibility in domain discretization and versatility in node arrangements. The effects of different thresholds on contact pressure distribution, real contact area, and elasto-plastic stress fields in contacting bodies are investigated and discussed. The results show that this model can help reduce about 48% computational time when the relative errors are about 5%.


1995 ◽  
Vol 117 (4) ◽  
pp. 575-579 ◽  
Author(s):  
Ellis Cha ◽  
D. B. Bogy

A numerical simulation of slider-disk contact in a magnetic hard disk drive is studied using the Hertzian contact model. The slider-disk contact is caused by flying height fluctuation due to disk runout for very low flying sliders. The rough disk topography is generated numerically by combining a sinusoidal waviness and a Gaussian roughness. For each asperity contact, the radius of curvature is calculated from the disk topography, and the radius is used to calculate the contact force using the Hertzian contact model. The slider’s response to a single asperity calculated using the Hertzian contact model agrees well with the result obtained using the impulse-momentum based contact model. The simulation results of slider-disk contact including suspension dynamics are calculated with and without friction for a “nano-slider.”


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Songtao Hu ◽  
Noel Brunetiere ◽  
Weifeng Huang ◽  
Xiangfeng Liu ◽  
Yuming Wang

Segmented bi-Gaussian stratified elastic asperity contact model of Leefe (1998, “‘Bi-Gaussian’ Representation of Worn Surface Topography in Elastic Contact Problems,” Tribol. Ser., 34, pp. 281–290), which suits for worn surfaces, has been improved. It still exhibits two drawbacks: (1) the arbitrary assumption of the probability density function (PDF) consisting of two component PDFs intersecting at a knee-point, violating the unity-area demand and (2) the preference for large roughness-scale part of the surface, leading to an error on the characterization of small roughness-scale part. A continuous bi-Gaussian stratified elastic asperity contact model is proposed based on a surface combination theory and a continuous separation method. The two stratified contact models are applied to a simulated pure bi-Gaussian surface and four real worn surfaces. The results show that the modified segmented and the continuous stratified contact models are both validated by a deterministic model with better accuracy for the continuous one.


Sign in / Sign up

Export Citation Format

Share Document