How to Intensify Biological Remediation of Contaminated Soils

2000 ◽  
pp. 669-676
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. B. Novakovskiy ◽  
V. A. Kanev ◽  
M. Y. Markarova

AbstractWe studied the long-term dynamics of plant communities after bio and phytoremediation of oil-polluted soils. Nine plots located in European Northeast and treated using various bioremediation methods were monitored from 2002 to 2014. Geobotanical descriptions (relevés) of each plot were performed in 2006 and 2014, and Grime’s theoretical CSR (competition–stress–ruderality) framework was used to assess the vegetation state and dynamics. We observed a clear shift of communities from pioneer (where ruderal species were prevalent) to stable (where competitor species were dominant) states. However, the remediation type did not significantly impact the vegetation recovery rate. After 12 years, all methods led to a 55–90% decrease in the oil content of the soil and a recovery of the vegetation cover. The plant communities contained mainly cereals and sedges which significantly differed from the original tundra communities before the oil spill. The control plot, treated only by mechanical cleaning, had minimum oil degradation rate (50%) and vegetation recovery rates, although, in CSR terms, its vegetation assemblage resembled the background community. Cereals (Agrostis gigantea, Deschampsia cespitosa, Phalaris arundinacea, and Poa pratensis), sedges (Carex canescens, Carex limosa, and Eriophorum vaginatum), and shrubs (Salix) were found to be the most effective species for phytoremediation, exhibiting high community productivity under the harsh northern conditions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Itziar Alkorta ◽  
Carlos Garbisu

The field of soil biological remediation was initially focused on the use of microorganisms. For organic contaminants, biostimulation and bioaugmentation were the strategies of choice. For heavy metals, bioremediation was centered on the feasibility of using microorganisms to reduce metal toxicity. Partly due to the impossibility to degrade metals, phytoremediation emerged proposing the use of plants to extract them (phytoextraction) or reduce their bioavailability (phytostabilization). Later, microbial-assisted phytoremediation addressed the inoculation of plant growth-promoting microorganisms to improve phytoremediation efficiency. Similarly, plant-assisted bioremediation examined the stimulatory effect of plant growth on the microbial degradation of soil contaminants. The combination of plants and microorganisms is nowadays often recommended for mixed contaminated soils. Finally, phytomanagement emerged as a phytotechnology focused on the use of plants and associated microorganisms to decrease contaminant linkages, maximize ecosystem services, and provide economic revenues. Although biological remediation methods have been in use for decades, the truth is that they have not yet yielded the expected results. Here, we claim that much more research is needed to make the most of the many ways that microorganisms have evolutionary developed to access the contaminants and to better understand the soil microbial networks responsible, to a great extent, for soil functioning.


2013 ◽  
Vol 62 (2) ◽  
pp. 373-386 ◽  
Author(s):  
György Czira ◽  
László Simon ◽  
György Vincze ◽  
József Koncz ◽  
Gyula Lakatos

Magyarországon a robbanóanyaggal és lőszerszármazékokkal szennyezett területek kármentesítése környezetvédelmi és nemzetgazdasági érdek. Egy hazai lőtérről, illetve lőszer-megsemmisítő telepről vett talajban 900 mg·kg−1 ólom- és 133 mg·kg−1 rézszennyeződést mértünk. A fitoextrakció célja, hogy a növényi szervekbe helyezzük át a nehézfémeket, lecsökkentve ezzel a mobilis, toxikus elemkészletet a szennyezett talajokban. Megvizsgáltuk, hogy egy lőszerszármazékokkal szennyezett talajba, illetve ólommal mesterségesen elszennyezett talajba kijuttatott kelátképzőszerekkel (EDTA, EGTA, citromsav) indukálható-e, megnövelhető-e a növényi szervek Pb- és Cu-akkumulációja?Tenyészedény-kísérletünkben kukoricát neveltünk a fenti ólommal és rézzel elszennyezett lőtéri talajon, illetve a közelben gyűjtött szennyezetlen talajt mesterségesen szennyeztük el 100 mg·kg-1 ólommal. Míg a kontroll (kelátképzővel nem kezelt) szennyezett talajon fejlődő kukorica gyökerében 554 μg·g−1 ólom volt mérhető, addig az EDTA hatására a gyökerekben 4611 μg·g−1-ra (több mint nyolcszorosára), a hajtásokban pedig 158-ról 302 μg·g−1-ra (91%-kal) nőtt az ólomkoncentráció. Mindkét változás statisztikailag szignifikánsnak bizonyult. Az EGTA a Cufelvételt serkentette; a kontrollkultúrák gyökerében 516 μg·g−1, a kezelt kultúrákban viszont 1063 μg·g−1 értéket mértünk (ez kétszeres szignifikáns növekmény). A hajtásokban 69%-kal, 29,9-ról 50,7 μg·g−1-ra emelkedett a réztartalom, ez azonban nem bizonyult statisztikailag szignifikánsnak. A citromsav az ólom hajtásokba történő áthelyeződését nem indukálta, rézfelvétel-serkentő hatása csak a gyökerekben volt szignifikáns.Tenyészedény-kísérleteink alapján kijelenthető, hogy elsősorban az EDTA, illetve részben az EGTA a talajba kijuttatva mobilisabbá, könnyebben felvehetővé teszi az ólmot és a rezet, elősegítve ezzel e két toxikus elem növényekben történő akkumulációját. Szabadföldi körülmények között is feltételezhető, hogy a növények betakarításával a toxikus elemek egy része eltávolítható a szennyezett talajból.


Author(s):  
I.А. Degtyareva ◽  
◽  
I.А. Shaydullina ◽  
А.Ya. Davletshina ◽  
T.Yu. Motina ◽  
...  
Keyword(s):  

Author(s):  
Nikolay S. Shulaev ◽  
◽  
Valeriya V. Pryanichnikova ◽  
Ramil R. Kadyrov ◽  
Inna V. Ovsyannikova ◽  
...  

The most essential scientifific and practical task in the area of ecological safety of pipelines operation is the development and improvement of methods of purifification and restoration of oil-contaminated soils. One of the most effificient and cost effective methods is electrochemical purifification, that does not require the use of expensive chemical reagents and soil excavation. However, the consideration of non-uniform contamination of various soil sections is required. The article examines the features of the organization and technological infrastructure for electrochemical purifification of non-uniformly contaminated soils when using a single electrical energy source, a method for calculating the design parameters of the corresponding installation is proposed. Effificient purifification of non-uniformly contaminated soil when using a specifified voltage is possible through the use of different-sized electrodes. For each soil type, the amount of transmitted electric charge required for soil purifification is determined by the concentration of the contaminant. Allocation of cathodes and anodes as parallel batteries and their connection using individual buses is an effective and energy-effificient solution, since an almost-uniform electric fifield is created in an inter-electrode space, thus allowing the reduction of the interelectrode resistance of the medium.


Sign in / Sign up

Export Citation Format

Share Document