copper uptake
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 47)

H-INDEX

50
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Corinna Probst ◽  
Sarela Garcia-Santamarina ◽  
Jacob T. Brooks ◽  
Inge Van Der Kloet ◽  
Dennis J. Thiele ◽  
...  

Copper homeostasis mechanisms are essential for microbial adaption to changing copper levels within the host during infection. In the opportunistic fungal pathogen Cryptococcus neoformans (Cn), the Cn Cbi1/Bim1 protein is a newly identified copper binding and release protein that is highly induced during copper limitation. Recent studies demonstrated that Cbi1 functions in copper uptake through the Ctr1 copper transporter during copper limitation. However, the mechanism of Cbi1 action is unknown. The fungal cell wall is a dynamic structure primarily composed of carbohydrate polymers, such as chitin and chitosan, polymers known to strongly bind copper ions. We demonstrated that Cbi1 depletion affects cell wall integrity and architecture, connecting copper homeostasis with adaptive changes within the fungal cell wall. The cbi1 ? mutant strain possesses an aberrant cell wall gene transcriptional signature as well as defects in chitin and chitosan deposition. These changes are reflected in altered macrophage activation and changes in the expression of specific virulence-associated phenotypes. Furthermore, using Cn strains defective in chitosan biosynthesis, we demonstrated that cell wall chitosan modulates the ability of the fungal cell to withstand copper stress. In conclusion, our data suggest a dual role for the fungal cell wall, in particular the inner chitin / chitosan layer, in protection against toxic levels of copper and providing a source of metal ion availability during copper starvation. Given the previously described role for Cbi1 in copper uptake, we propose that this copper-binding protein is involved in shuttling copper from the cell wall to the copper transporter Ctr1 for regulated microbial copper uptake.


2021 ◽  
Vol 163 ◽  
pp. 108462
Author(s):  
S. Randriamamonjy ◽  
A. Mouret ◽  
E. Metzger ◽  
P. Gaudin ◽  
C. La ◽  
...  

Author(s):  
Emmeline D'Incau ◽  
Lépinay Alexandra ◽  
Capiaux Hervé ◽  
Gaudin Pierre ◽  
Cornu Jean-Yves ◽  
...  

2021 ◽  
Author(s):  
Pavel Janoš ◽  
Jana Aupič ◽  
Sharon Ruthstein ◽  
Alessandra Magistrato

Copper is a trace element vital to many cellular functions. Yet its abnormal levels are toxic to cells, provoking a variety of severe diseases. The high affinity Copper Transporter 1 (CTR1), being the main in-cell copper (Cu(I)) entry route, tightly regulates its cellular uptake via a still elusive mechanism. Here, all-atoms simulations unlock the molecular terms of Cu(I) transport in eukaryotes disclosing that the two Methionine triads, forming the selectivity filter, play an unprecedented dual role both enabling selective Cu(I) transport and regulating its uptake-rate thanks to an intimate coupling between the conformational plasticity of their bulky side chains and the number of bound Cu(I) ions. Namely, the Met residues act as a gate reducing the Cu(I) import-rate when two ions simultaneously bind to CTR1. This may represent an elegant autoregulatory mechanism through which CTR1 protects the cells from excessively high, and hence toxic, in-cell Cu(I) levels. Overall, these outcomes resolve fundamental questions in CTR1 biology and open new windows of opportunity to tackle diseases associated with an imbalanced copper uptake.


Author(s):  
Philip Dershwitz ◽  
Wenyu Gu ◽  
Julien Roche ◽  
Christina S. Kang-Yun ◽  
Jeremy D. Semrau ◽  
...  

Methanobactins (MBs) are ribosomally synthesized and post-translationally modified peptides (RiPPs) produced by methanotrophs for copper uptake. The post-translational modification that define MBs is the formation of two heterocyclic groups with associated thioamines from X-Cys dipeptide sequences. Both heterocyclic groups in the MB from Methylosinus trichosporium OB3b (MB-OB3b) are oxazolone groups. The precursor gene for MB-OB3b, mbnA , which is part of a gene cluster that contains both annotated and unannotated genes. One of those unannotated genes, mbnC , is found in all MB operons, and in conjunction with mbnB , is reported to be involved in the formation of both heterocyclic groups in all MBs. To determine the function of mbnC , a deletion mutation was constructed in M. trichosporium OB3b, and the MB produced from the Δ mbn C mutant was purified and structurally characterized by UV-visible absorption spectroscopy, mass spectrometry and solution NMR spectroscopy. MB-OB3b from Δ mbn C was missing the C-terminal Met and also found to contain a Pro and a Cys in place of the pyrrolidiny-oxazolone-thioamide group. These results demonstrate MbnC is required for the formation of the C-terminal pyrrolidinyl-oxazolone-thioamide group from the Pro-Cys dipeptide, but not for the formation of the N-terminal 3-methylbutanol-oxazolone-thioamide group from the N-terminal dipeptide Leu-Cys. IMPORTANCE A number of environmental and medical applications have been proposed for MBs, including bioremediation of toxic metals, nanoparticle formation, as well as for the treatment of copper- and iron-related diseases. However, before MBs can be modified and optimized for any specific application, the biosynthetic pathway for MB production must be defined. The discovery that mbnC is involved in the formation of the C-terminal oxazolone group with associated thioamide but not for the formation of the N-terminal oxazolone group with associated thioamide in M. trichosporium OB3b suggests the enzymes responsible for post-translational modification(s) of the two oxazolone groups are not identical.


2021 ◽  
Vol 22 (17) ◽  
pp. 9530
Author(s):  
Giovanni Tabbì ◽  
Lorena Maria Cucci ◽  
Calogero Pinzino ◽  
Alessia Munzone ◽  
Tiziano Marzo ◽  
...  

The angiogenin protein (ANG) is one of the most potent endogenous angiogenic factors. In this work we characterized by means of potentiometric, spectroscopic and voltammetric techniques, the copper complex species formed with peptide fragments derived from the N-terminal domain of the protein, encompassing the sequence 1-17 and having free amino, Ang1-17, or acetylated N-terminus group, AcAng1-17, so to explore the role of amino group in metal binding and cellular copper uptake. The obtained data show that amino group is the main copper anchoring site for Ang1-17. The affinity constant values, metal coordination geometry and complexes redox-potentials strongly depend, for both peptides, on the number of copper equivalents added. Confocal laser scanning microscope analysis on neuroblastoma cells showed that in the presence of one equivalent of copper ion, the free amino Ang1-17 increases cellular copper uptake while the acetylated AcAng1-17 strongly decreases the intracellular metal level. The activity of peptides was also compared to that of the protein normally present in the plasma (wtANG) as well as to the recombinant form (rANG) most commonly used in literature experiments. The two protein isoforms bind copper ions but with a different coordination environment. Confocal laser scanning microscope data showed that the wtANG induces a strong increase in intracellular copper compared to control while the rANG decreases the copper signal inside cells. These data demonstrate the relevance of copper complexes’ geometry to modulate peptides’ activity and show that wtANG, normally present in the plasma, can affect cellular copper uptake.


Author(s):  
Maria Isidória Silva Gonzaga ◽  
José Carlos de Jesus Santos ◽  
Luiz Fernando Ganassali Junior ◽  
Pryanka Thuyra Nascimento Fontes ◽  
Jady da Silva Araújo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document