Estimating In Situ Compressive Strength of Existing Concrete Structures

Author(s):  
Yue Choong Kog
2021 ◽  
Vol 13 (9) ◽  
pp. 1846
Author(s):  
Vivek Kumar ◽  
Isabel M. Morris ◽  
Santiago A. Lopez ◽  
Branko Glisic

Estimating variations in material properties over space and time is essential for the purposes of structural health monitoring (SHM), mandated inspection, and insurance of civil infrastructure. Properties such as compressive strength evolve over time and are reflective of the overall condition of the aging infrastructure. Concrete structures pose an additional challenge due to the inherent spatial variability of material properties over large length scales. In recent years, nondestructive approaches such as rebound hammer and ultrasonic velocity have been used to determine the in situ material properties of concrete with a focus on the compressive strength. However, these methods require personnel expertise, careful data collection, and high investment. This paper presents a novel approach using ground penetrating radar (GPR) to estimate the variability of in situ material properties over time and space for assessment of concrete bridges. The results show that attributes (or features) of the GPR data such as raw average amplitudes can be used to identify differences in compressive strength across the deck of a concrete bridge. Attributes such as instantaneous amplitudes and intensity of reflected waves are useful in predicting the material properties such as compressive strength, porosity, and density. For compressive strength, one alternative approach of the Maturity Index (MI) was used to estimate the present values and compare with GPR estimated values. The results show that GPR attributes could be successfully used for identifying spatial and temporal variation of concrete properties. Finally, discussions are presented regarding their suitability and limitations for field applications.


2014 ◽  
Vol 528 ◽  
pp. 127-131
Author(s):  
Yin Liu ◽  
Hao Qiang Zhang ◽  
Qi Feng Wang ◽  
Hai Yun Zhang

Aiming at the problem of only source material in paste filling and garbage-surrounded city, a system engineering including them was proposed. The construction waste crushing process of filling was optimized based on the gangue process. Compared with gangue, the physical property of three kinds of construction waste ranged widely. Also the paste of all could reach the goal of filling, which the collapsed slump ranged from 18cm to 23cm and the highest compressive strength of 8h and 28d reached 0.17MPa and 3.82MPa. However, the properties of concrete structures of construction waste were better than that of brick-mixed structures.


2013 ◽  
Vol 687 ◽  
pp. 185-190 ◽  
Author(s):  
Masoud Jamshidi ◽  
Mohammad Javad Ghasemi ◽  
Abdolreza Hashemi

Polymer concretes (PC) were introduced to building and construction industry more than 50 years ago. Gradually, they became a suitable substitute for concrete structures. Their superior properties againt aggresives introduced them as a good overlay for concrete structures; however, their application was shortly diminished due to the higher costs. In this research a homemade cost-quality effective resin (unsaturated polyester) is used as binder in the polymer concrete production. Polymer concrete specimens were evaluated for compressive strength and its fluctuation due to cyclic exposure to different aggresive solutions (sulfuric acid, nitric acid, citric acid, chloridric acid, sodum sulfate, water, demineralized water, sodium hydroxid, potasium hydroxid and gas oil). It was found that PC specimens degraded more in alkali conditioned in comparison to acid solutions.


2006 ◽  
Vol 309-311 ◽  
pp. 857-860 ◽  
Author(s):  
Q. Yao ◽  
Dong Xiao Li ◽  
K.W. Liu ◽  
Bo Zhang ◽  
H. Li ◽  
...  

This study was to develop an injectable biocompatible and porous calcium phosphate collagen composite cement scaffold by in situ setting. TTCP was prepared as main material of the CPC powder, and the collagen solution was added into the phosphoric acid directly to form the liquid phase. The injectable time (tI), setting time (tS) and setting temperature (TS), along with the PH value were recorded during the setting process. The compressive strength, morphology and porosity were tested. With the increase of collagen, this novel CPC get a tI of 5mins to 8mins, tS of 20mins to 30mins, compressive strength from 1.5MPa to 4MPa, and the porosity from 40% to 60%. This study gave a possibility to form a porous scaffold of collagen/CPC composite with the nature of injectability and setting in situ.


2017 ◽  
Vol 727 ◽  
pp. 806-814 ◽  
Author(s):  
Xiao Wei Ma ◽  
Jian Xing Shen ◽  
Ke Chang Zhang ◽  
Ling Kai Kong ◽  
Jia Le Sun ◽  
...  

Here in, we report the porous bioceramic with Na2Ti6O13 rods prepared by in‒situ growth method. The samples were prepared using cold uniaxial pressing (40 MPa) technique and further sintered at different temperatures. The structure and morphology were characterized by XRD and SEM. The porosity, compressive strength and fracture toughness were also investigated. The bone-like apatite deposition ability of the fabricated ceramic samples was evaluated by Kokubo simulated body fluid (SBF) soaking method. The results indicated that the Na2Ti6O13 rods with about 1‒3 μm in diameter are uniformly distributed in the self‒toughness porous sodium titanate ceramics (SPSTC). The SPSTC with a porosity of 61.10±1.12 % exhibits good compressive strength (43.36±2.43 MPa) and fracture toughness (3.47±0.21 MPa·m1/2). The results indicate that the novel SPSTC scaffolds are promising for bone tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document