Sympathetic Nervous System Dysregulation of Cardiac Function and Myocyte Potassium Channel Remodeling in Rodent Seizure Models

2010 ◽  
Author(s):  
Steven Bealer ◽  
Cameron Metcalf ◽  
Jason Little ◽  
Matteo Vatta ◽  
Amy Brewster ◽  
...  
2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Alessandra Castaldi ◽  
Tania Zaglia ◽  
Vittoria Di Mauro ◽  
Pierluigi Carullo ◽  
Giacomo Viggiani ◽  
...  

Rationale: The sympathetic nervous system plays a fundamental role in the regulation of myocardial function. During chronic pressure overload, over-activation of the sympathetic nervous system induces the release of catecholamines, which activate β-adrenergic receptors (βARs) in cardiomyocytes (CMs) and lead to increased heart rate and cardiac contractility. However, chronic stimulation of βARs leads to impaired cardiac function and β-blockers are widely used as therapeutic agents for the treatment of cardiac disease. MiR-133 is highly expressed in the myocardium and is involved in controlling cardiac function through regulation of mRNA translation/stability. Objective: To determine whether miR-133 affects βAR signaling during progression to heart failure. Methods and Results: Based on bioinformatic analysis, β1AR and other components of the β1AR signal transduction cascade, including adenylate cyclase VI and the catalytic subunit of the cAMP-dependent protein kinase A (PKA), were predicted as direct targets of miR-133 and subsequently validated by experimental studies. Consistently, cAMP accumulation and activation of downstream targets were repressed by miR-133 overexpression in both neonatal and adult CMs following selective β1AR stimulation. Furthermore, gain- and loss-of-function studies of miR-133 revealed its role in counteracting the deleterious apoptotic effects caused by chronic β1AR stimulation. This was confirmed in vivo using a novel cardiacspecific TetON-miR-133 inducible transgenic mouse model (Tg133). When subjected to transaortic constriction, Tg133 mice maintained cardiac performance and showed attenuated apoptosis and reduced fibrosis compared to control mice. Conclusions: MiR-133 controls multiple components of the β1AR transduction cascade and is cardioprotective during heart failure.


2021 ◽  
Vol 320 (1) ◽  
pp. H66-H76
Author(s):  
Nicholas Kluge ◽  
Michael Dacey ◽  
Joseph Hadaya ◽  
Kalyanam Shivkumar ◽  
Shyue-An Chan ◽  
...  

The sympathetic nervous system regulates cardiac function through release of neurotransmitters and neuropeptides within the myocardium. Neuropeptide Y (NPY) acts as an acute cardiac vasoconstrictor and chronically to regulate angiogenesis and cardiac remodeling. Current methodologies for the measure of NPY are not capable of providing rapid readouts on a single-sample basis. Here we provide the first in vivo methodology to report dynamic, localized NPY levels within both myocardium and vascular compartments in a beating heart.


2002 ◽  
Vol 283 (5) ◽  
pp. H1838-H1845 ◽  
Author(s):  
Patricia C. Brum ◽  
Jon Kosek ◽  
Andrew Patterson ◽  
Daniel Bernstein ◽  
Brian Kobilka

α2A-Adrenergic receptors (ARs) in the midbrain regulate sympathetic nervous system activity, and both α2A-ARs and α2C-ARs regulate catecholamine release from sympathetic nerve terminals in cardiac tissue. Disruption of both α2A- and α2C-ARs in mice leads to chronically elevated sympathetic tone and decreased cardiac function by 4 mo of age. These knockout mice have increased mortality, reduced exercise capacity, decreased peak oxygen uptake, and decreased cardiac contractility relative to wild-type controls. Moreover, we observed significant abnormalities in the ultrastructure of cardiac myocytes from α2A/α2C-AR knockout mice by electron microscopy. Our results demonstrate that chronic elevation of sympathetic tone can lead to abnormal cardiac function in the absence of prior myocardial injury or genetically induced alterations in myocardial structural or functional proteins. These mice provide a physiologically relevant animal model for investigating the role of the sympathetic nervous system in the development and progression of heart failure.


1988 ◽  
Vol 52 (10) ◽  
pp. 1121-1131 ◽  
Author(s):  
MITSUTAKA YASUDA ◽  
TOSHIO NISHIKIMI ◽  
KANAME AKIOKA ◽  
MASAKAZU TERAGAKI ◽  
HISAO OKU ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Liliana Espinoza ◽  
Stephanie Fedorchak ◽  
Carie R. Boychuk

There is consensus that the heart is innervated by both the parasympathetic and sympathetic nervous system. However, the role of the parasympathetic nervous system in controlling cardiac function has received significantly less attention than the sympathetic nervous system. New neuromodulatory strategies have renewed interest in the potential of parasympathetic (or vagal) motor output to treat cardiovascular disease and poor cardiac function. This renewed interest emphasizes a critical need to better understand how vagal motor output is generated and regulated. With clear clinical links between cardiovascular and metabolic diseases, addressing this gap in knowledge is undeniably critical to our understanding of the interaction between metabolic cues and vagal motor output, notwithstanding the classical role of the parasympathetic nervous system in regulating gastrointestinal function and energy homeostasis. For this reason, this review focuses on the central, vagal circuits involved in sensing metabolic state(s) and enacting vagal motor output to influence cardiac function. It will review our current understanding of brainstem vagal circuits and their unique position to integrate metabolic signaling into cardiac activity. This will include an overview of not only how metabolic cues alter vagal brainstem circuits, but also how vagal motor output might influence overall systemic concentrations of metabolic cues known to act on the cardiac tissue. Overall, this review proposes that the vagal brainstem circuits provide an integrative network capable of regulating and responding to metabolic cues to control cardiac function.


1981 ◽  
Vol 97 (1) ◽  
pp. 91-97 ◽  
Author(s):  
H. Storm ◽  
C. van Hardeveld ◽  
A. A. H. Kassenaar

Abstract. Basal plasma levels for adrenalin (A), noradrenalin (NA), l-triiodothyronine (T3), and l-thyroxine (T4) were determined in rats with a chronically inserted catheter. The experiments described in this report were started 3 days after the surgical procedure when T3 and T4 levels had returned to normal. Basal levels for the catecholamines were reached already 4 h after the operation. The T3/T4 ratio in plasma was significantly increased after 3, 7, and 14 days in rats kept at 4°C and the same holds for the iodide in the 24-h urine after 7 and 14 days at 4°C. The venous NA plasma concentration was increased 6- to 12-fold during the same period of exposure to cold, whereas the A concentration remained at the basal level. During infusion of NA at 23°C the T3/T4 ratio in plasma was significantly increased after 7 days compared to pair-fed controls, and the same holds for the iodide excretion in the 24-h urine. This paper presents further evidence for a role of the sympathetic nervous system on T4 metabolism in rats at resting conditions.


Sign in / Sign up

Export Citation Format

Share Document