Impact of ocean warming and ocean acidification on marine invertebrate life history stages

Author(s):  
Maria Byrne
2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Rebecca Albright

Ocean acidification (OA) is a relatively young yet rapidly developing scientific field. Assessing the potential response(s) of marine organisms to projected near-future OA scenarios has been at the forefront of scientific research, with a focus on ecosystems (e.g., coral reefs) and processes (e.g., calcification) that are deemed particularly vulnerable. Recently, a heightened emphasis has been placed on evaluating early life history stages as these stages are generally perceived to be more sensitive to environmental change. The number of acidification-related studies focused on early life stages has risen dramatically over the last several years. While early life history stages of corals have been understudied compared to other marine invertebrate taxa (e.g., echinoderms, mollusks), numerous studies exist to contribute to our status of knowledge regarding the potential impacts of OA on coral recruitment dynamics. To synthesize this information, the present paper reviews the primary literature on the effects of acidification on sexual reproduction and early stages of corals, incorporating lessons learned from more thoroughly studied taxa to both assess our current understanding of the potential impacts of OA on coral recruitment and to inform and guide future research in this area.


Ocean warming and acidification are major climate change stressors for marine invertebrate larvae, and their impacts differ between habitats and regions. In many regions species with pelagic propagules are on the move, exhibiting poleward trends as temperatures rise and ocean currents change. Larval sensitivity to warming varies among species, influencing their invasive potential. Broadly distributed species with wide developmental thermotolerances appear best able to avail of the new opportunities provided by warming. Ocean acidification is a multi-stressor in itself and the impacts of its covarying stressors differ among taxa. Increased pCO2 is the key stressor impairing calcification in echinoid larvae while decreased mineral saturation is more important for calcification in bivalve larvae. Non-feeding, non-calcifying larvae appear more resilient to warming and acidification. Some species may be able to persist through acclimatization/adaptation to produce resilient offspring. Understanding the capacity for adaptation/acclimatization across generations is important to predicting the future species composition of marine communities.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82938 ◽  
Author(s):  
Sven Uthicke ◽  
Danilo Pecorino ◽  
Rebecca Albright ◽  
Andrew Peter Negri ◽  
Neal Cantin ◽  
...  

2020 ◽  
Vol 29 (23) ◽  
pp. 4618-4636
Author(s):  
Hannah R. Devens ◽  
Phillip L. Davidson ◽  
Dione J. Deaker ◽  
Kathryn E. Smith ◽  
Gregory A. Wray ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Christopher L. Reyes-Giler ◽  
Brooke E. Benson ◽  
Morgan Levy ◽  
Xuqing Chen ◽  
Anthony Pires ◽  
...  

Rising atmospheric CO2 reduces seawater pH causing ocean acidification (OA). Understanding how resilient marine organisms respond to OA may help predict how community dynamics will shift as CO2 continues rising. The common slipper shell snail Crepidula fornicata is a marine gastropod native to eastern North America that has been a successful invader along the western European coastline and elsewhere. It has also been previously shown to be resilient to global change stressors. To examine the mechanisms underlying C. fornicata’s resilience to OA, we conducted two controlled laboratory experiments. First, we examined several phenotypes and genome-wide gene expression of C. fornicata in response to pH treatments (7.5, 7.6, and 8.0) throughout the larval stage and then tested how conditions experienced as larvae influenced juvenile stages (i.e., carry-over effects). Second, we examined genome-wide gene expression patterns of C. fornicata larvae in response to acute (4, 10, 24, and 48 h) pH treatment (7.5 and 8.0). Both C. fornicata larvae and juveniles exhibited resilience to OA and their gene expression responses highlight the role of transcriptome plasticity in this resilience. Larvae did not exhibit reduced growth under OA until they were at least 8 days old. These phenotypic effects were preceded by broad transcriptomic changes, which likely served as an acclimation mechanism for combating reduced pH conditions frequently experienced in littoral zones. Larvae reared in reduced pH conditions also took longer to become competent to metamorphose. In addition, while juvenile sizes at metamorphosis reflected larval rearing pH conditions, no carry-over effects on juvenile growth rates were observed. Transcriptomic analyses suggest increased metabolism under OA, which may indicate compensation in reduced pH environments. Transcriptomic analyses through time suggest that these energetic burdens experienced under OA eventually dissipate, allowing C. fornicata to reduce metabolic demands and acclimate to reduced pH. Carry-over effects from larval OA conditions were observed in juveniles; however, these effects were larger for more severe OA conditions and larvae reared in those conditions also demonstrated less transcriptome elasticity. This study highlights the importance of assessing the effects of OA across life history stages and demonstrates how transcriptomic plasticity may allow highly resilient organisms, like C. fornicata, to acclimate to reduced pH environments.


Sign in / Sign up

Export Citation Format

Share Document