Saddle Points, Optimality and Duality

2011 ◽  
pp. 169-205
2007 ◽  
Vol 72 (8) ◽  
pp. 1122-1138 ◽  
Author(s):  
Milan Uhlár ◽  
Ivan Černušák

The complex NO+·H2S, which is assumed to be an intermediate in acid rain formation, exhibits thermodynamic stability of ∆Hº300 = -76 kJ mol-1, or ∆Gº300 = -47 kJ mol-1. Its further transformation via H-transfer is associated with rather high barriers. One of the conceivable routes to lower the energy of the transition state is the action of additional solvent molecule(s) that can mediate proton transfer. We have studied several NO+·H2S structures with one or two additional water molecule(s) and have found stable structures (local minima), intermediates and saddle points for the three-body NO+·H2S·H2O and four-body NO+·H2S·(H2O)2 clusters. The hydrogen bonds network in the four-body cluster plays a crucial role in its conversion to thionitrous acid.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Andrés Anabalón ◽  
Simon F. Ross

Abstract We study Lorentzian supersymmetric configurations in D = 4 and D = 5 gauged $$ \mathcal{N} $$ N = 2 supergravity. We show that there are smooth 1/2 BPS solutions which are asymptotically AdS4 and AdS5 with a planar boundary, a compact spacelike direction and with a Wilson line on that circle. There are solitons where the S1 shrinks smoothly to zero in the interior, with a magnetic flux through the circle determined by the Wilson line, which are AdS analogues of the Melvin fluxtube. There is also a solution with a constant gauge field, which is pure AdS. Both solutions preserve half of the supersymmetries at a special value of the Wilson line. There is a phase transition between these two saddle-points as a function of the Wilson line precisely at the supersymmetric point. Thus, the supersymmetric solutions are degenerate, at least at the supergravity level. We extend this discussion to one of the Romans solutions in four dimensions when the Euclidean boundary is S1× Σg where Σg is a Riemann surface with genus g > 0. We speculate that the supersymmetric state of the CFT on the boundary is dual to a superposition of the two degenerate geometries.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kyungchan Lee ◽  
Gunnar F. Lange ◽  
Lin-Lin Wang ◽  
Brinda Kuthanazhi ◽  
Thaís V. Trevisan ◽  
...  

AbstractTime reversal symmetric (TRS) invariant topological insulators (TIs) fullfil a paradigmatic role in the field of topological materials, standing at the origin of its development. Apart from TRS protected strong TIs, it was realized early on that more confounding weak topological insulators (WTI) exist. WTIs depend on translational symmetry and exhibit topological surface states only in certain directions making it significantly more difficult to match the experimental success of strong TIs. We here report on the discovery of a WTI state in RhBi2 that belongs to the optimal space group P$$\bar{1}$$ 1 ¯ , which is the only space group where symmetry indicated eigenvalues enumerate all possible invariants due to absence of additional constraining crystalline symmetries. Our ARPES, DFT calculations, and effective model reveal topological surface states with saddle points that are located in the vicinity of a Dirac point resulting in a van Hove singularity (VHS) along the (100) direction close to the Fermi energy (EF). Due to the combination of exotic features, this material offers great potential as a material platform for novel quantum effects.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Alejandro Cabo-Bizet ◽  
Davide Cassani ◽  
Dario Martelli ◽  
Sameer Murthy

Abstract We systematically analyze the large-N limit of the superconformal index of $$ \mathcal{N} $$ N = 1 superconformal theories having a quiver description. The index of these theories is known in terms of unitary matrix integrals, which we calculate using the recently-developed technique of elliptic extension. This technique allows us to easily evaluate the integral as a sum over saddle points of an effective action in the limit where the rank of the gauge group is infinite. For a generic quiver theory under consideration, we find a special family of saddles whose effective action takes a universal form controlled by the anomaly coefficients of the theory. This family includes the known supersymmetric black hole solution in the holographically dual AdS5 theories. We then analyze the index refined by turning on flavor chemical potentials. We show that, for a certain range of chemical potentials, the effective action again takes a universal cubic form that is controlled by the anomaly coefficients of the theory. Finally, we present a large class of solutions to the saddle-point equations which are labelled by group homomorphisms of finite abelian groups of order N into the torus.


Author(s):  
Weidong Yang ◽  
Menglong Liu ◽  
Linwei Ying ◽  
Xi Wang

This paper demonstrated the coupled surface effects of thermal Casimir force and squeeze film damping (SFD) on size-dependent electromechanical stability and bifurcation of torsion micromirror actuator. The governing equations of micromirror system are derived, and the pull-in voltage and critical tilting angle are obtained. Also, the twisting deformation of torsion nanobeam can be tuned by functionally graded carbon nanotubes reinforced composites (FG-CNTRC). A finite element analysis (FEA) model is established on the COMSOL Multiphysics platform, and the simulation of the effect of thermal Casimir force on pull-in instability is utilized to verify the present analytical model. The results indicate that the numerical results well agree with the theoretical results in this work and experimental data in the literature. Further, the influences of volume fraction and geometrical distribution of CNTs, thermal Casimir force, nonlocal parameter, and squeeze film damping on electrically actuated instability and free-standing behavior are detailedly discussed. Besides, the evolution of equilibrium states of micromirror system is investigated, and bifurcation diagrams and phase portraits including the periodic, homoclinic, and heteroclinic orbits are described as well. The results demonstrated that the amplitude of the tilting angle for FGX-CNTRC type micromirror attenuates slower than for FGO-CNTRC type, and the increment of CNTs volume ratio slows down the attenuation due to the stiffening effect. When considering squeeze film damping, the stable center point evolves into one focus point with homoclinic orbits, and the dynamic system maintains two unstable saddle points with the heteroclinic orbits due to the effect of thermal Casimir force.


Sign in / Sign up

Export Citation Format

Share Document