Security Analysis of Extensible Authentication Protocol Methods based on AAA Architecture

Author(s):  
Jong-Hyouk Lee ◽  
Su-Jin Jung ◽  
Young-Ju Han ◽  
Tai-Myoung Chung
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Junfeng Miao ◽  
Zhaoshun Wang ◽  
Xue Miao ◽  
Longyue Xing

When mobile network enters 5G era, 5G networks have a series of unparalleled advantages. Therefore, the application of 5G network technology in the Internet of Vehicles (IoV) can promote more intelligently vehicular networks and more efficiently vehicular information transmission. However, with the combination of 5G networks and vehicular networks technology, it requires safe and reliable authentication and low computation overhead. Therefore, it is a challenge to achieve such low latency, security, and high mobility. In this paper, we propose a secure and efficient lightweight authentication protocol for vehicle group. The scheme is based on the extended chaotic map to achieve authentication, and the Chinese remainder theorem distributes group keys. Scyther is used to verify the security of the scheme, and the verification results show that the security of the scheme can be guaranteed. In addition, through security analysis, the scheme can not only effectively resist various attacks but also guarantee security requirements such as anonymity and unlinkability. Finally, by performance analysis and comparison, our scheme has less computation and communication overhead.


2014 ◽  
Vol 513-517 ◽  
pp. 1289-1293 ◽  
Author(s):  
Si Min Liu ◽  
Jun Yao Ye ◽  
Ying Lian Wang

This paper researched on Needham-Schroeder symmetric key authentication protocol based on BAN logic. It pointed out the flaw of the protocol which can be used by replay attack and improved the protocol by adding nonce in the transferred message. Then it listed the improved NS authentication protocol. Finally, this paper proved the improved protocol successful and available with BAN logic.


Author(s):  
Ioana Lasc ◽  
Reiner Dojen ◽  
Tom Coffey

Many peer-to-peer security protocols proposed for wireless communications use one-time shared secrets for authentication purposes. This paper analyses online update mechanisms for one-time shared secrets. A new type of attack against update mechanisms, called desynchronisation attack, is introduced. This type of attack may lead to a permanent denial of service condition. A case study demonstrates the effectiveness of desynchronisation attacks against a security protocol for mobile satellite communications. A new mutual authentication protocol for satellite communications, incorporating a resynchronisation capability, is proposed to counter the disruptive effects of desynchronisation attacks. The new protocol has an esynchronisation phase that is initiated whenever desynchronisation is suspected. Thus, the possibility of causing permanent denial of service conditions by mounting desynchronisation attacks is eliminated. A security analysis of the proposed protocol establishes its resistance against attacks like replay attacks, dictionary attacks, and desynchronisation attacks.


Author(s):  
Sasan Adibi ◽  
Gordon B. Agnew

Authentication is an important part of the authentication authorization and accounting (AAA) schemes and the extensible authentication protocol (EAP) is a universally accepted framework for authentication commonly used in wireless networks and point-to-point protocol (PPP) connections. The main focus of this chapter is the technical details to examine how EAP is integrated into the architecture of next generation networks (NGN), such as in worldwide interoperability for microwave access (WiMAX), which is defined in the IEEE 802.16d and IEEE 802.16e standards and in current wireless protocols, such as IEEE 802.11i. This focus includes an overview of the integration of EAP with IEEE 802.1x, remote authentication dial in user service (RADIUS), DIAMETER, and pair-wise master key version (2PKv2).


Author(s):  
Manuel Mogollon

Unless a corporation can reliably authenticate its network users, it is not possible to keep unauthorized users out of its networks. Authentication is essential for two parties to be able to trust in each other’s identities. Authentication is based on something you know (a password), on something you have (a token card, a digital certificate), or something that is part of you (fingerprints, voiceprint). A strong authentication requires at least two of these factors. The following mechanisms of authentication are described in this chapter: (1) IEEE 802.1X Access Control Protocol; (2) Extensible Authentication Protocol (EAP) and EAP methods; (3) traditional passwords; (4) Remote Authentication Dial-in Service (RADIUS); (5) Kerberos authentication service; and (6) X.509 authentication.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Hui Zhang ◽  
Yuanyuan Qian ◽  
Qi Jiang

Wearable health monitoring systems (WHMSs) have become the most effective and practical solutions to provide users with low-cost, noninvasive, long-term continuous health monitoring. Authentication is one of the key means to ensure physiological information security and privacy. Although numerous authentication protocols have been proposed, few of them cater to crossdomain WHMSs. In this paper, we present an efficient and provably secure crossdomain multifactor authentication protocol for WHMSs. First, we propose a ticket-based authentication model for multidomain WHMSs. Specifically, a mobile device of one domain can request a ticket from the cloud server of another domain with which wearable devices are registered and remotely access the wearable devices with the ticket. Secondly, we propose a crossdomain three-factor authentication scheme based on the above model. Only a doctor who can present all three factors can request a legitimate ticket and use it to access the wearable devices. Finally, a comprehensive security analysis of the proposed scheme is carried out. In particular, we give a provable security analysis in the random oracle model. The comparisons of security and efficiency with the related schemes demonstrate that the proposed scheme is secure and practical.


Sign in / Sign up

Export Citation Format

Share Document