Mitochondrial Protein Acetylation and Sirtuin-Mediated Deacetylation

Author(s):  
Lucia Valente ◽  
Radek Szklarczyk ◽  
Martijn Huynen ◽  
Johannes Spelbrink
2019 ◽  
Vol 75 (4) ◽  
pp. 823-834.e5 ◽  
Author(s):  
Tianshi Wang ◽  
Ying Cao ◽  
Quan Zheng ◽  
Jun Tu ◽  
Wei Zhou ◽  
...  

Redox Biology ◽  
2015 ◽  
Vol 6 ◽  
pp. 33-40 ◽  
Author(s):  
Peter S. Harris ◽  
Samantha R. Roy ◽  
Christina Coughlan ◽  
David J. Orlicky ◽  
Yongliang Liang ◽  
...  

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Alejandro Aguilar‐Sáenz ◽  
Niria Treviño‐Saldaña ◽  
Yuriana Oropeza‐Almazán ◽  
Gerardo García‐Rivas

Circulation ◽  
2018 ◽  
Vol 137 (19) ◽  
pp. 2052-2067 ◽  
Author(s):  
Xiaokan Zhang ◽  
Ruiping Ji ◽  
Xianghai Liao ◽  
Estibaliz Castillero ◽  
Peter J. Kennel ◽  
...  

2013 ◽  
Vol 126 (21) ◽  
pp. 4843-4849 ◽  
Author(s):  
B. R. Webster ◽  
I. Scott ◽  
K. Han ◽  
J. H. Li ◽  
Z. Lu ◽  
...  

2011 ◽  
Vol 76 (0) ◽  
pp. 267-277 ◽  
Author(s):  
M. D. Hirschey ◽  
T. Shimazu ◽  
J.- Y. Huang ◽  
B. Schwer ◽  
E. Verdin

2012 ◽  
Vol 52 ◽  
pp. 23-35 ◽  
Author(s):  
Kristin A. Anderson ◽  
Matthew D. Hirschey

Changes in cellular nutrient availability or energy status induce global changes in mitochondrial protein acetylation. Over one-third of all proteins in the mitochondria are acetylated, of which the majority are involved in some aspect of energy metabolism. Mitochondrial protein acetylation is regulated by SIRT3 (sirtuin 3), a member of the sirtuin family of NAD+-dependent protein deacetylases that has recently been identified as a key modulator of energy homoeostasis. In the absence of SIRT3, mitochondrial proteins become hyperacetylated, have altered function, and contribute to mitochondrial dysfunction. This chapter presents a review of the functional impact of mitochondrial protein acetylation, and its regulation by SIRT3.


Sign in / Sign up

Export Citation Format

Share Document