Preparation of Monoclonal and Polyclonal Antibodies against Specific Protein(s)

Parasitology ◽  
2004 ◽  
Vol 130 (1) ◽  
pp. 131-139 ◽  
Author(s):  
M. K. ISLAM ◽  
T. MIYOSHI ◽  
Y. YOKOMIZO ◽  
N. TSUJI

The cloning and molecular characterization of a cDNA encodingAscaris suum24 kDa antigen (As24) are described. The cDNA sequence consists of 853 bp with an open reading frame coding for a protein of 147 amino acids with an inferred signal peptide of 19 amino acids. The predicted molecular mass and pI were 16 kDa and 8·35 respectively. The endogenous protein in adultA. suumwas 24 kDa with the expected pI. A search of the public databases revealed over 50% homology with proteins from filarial parasites but not to other known proteins, suggesting that As24 is a nematode-specific protein. Immunohistochemical studies using polyclonal antibodies raised againstEscherichia coli-expressed recombinant As24 demonstrated that the endogenous As24 proteins were intensely localized in unembryonated eggs within the uterus, uterine and gut epithelium, muscle tissues and in the hypodermis of an adult femaleA. suum. Endogenous As24 was expressed throughoutA. suumdevelopment and was detected in the excretory/secretory products by immunoblot analysis. Importantly, a homologous protein(s) was detected inAscarisfrom human andToxocara canisfrom dog, suggesting that As24 is a nematode-specific protein.


1987 ◽  
Author(s):  
H P Schwarz ◽  
W Muntean

Vitamin K-dependent coagulation proteins are known to be decreased in the neonatal period. So far no data have been published on protein S (PS), the vitamin K-dependent cofactor for the antithrombotic enzyme, activated protein C (APC) in this period. We determined, therefore, PS antigen, PS activity and C4b-BP,a regulatory protein of the classical complement pathway to which PS is complexed, in 36 neonates. Total PS antigen in newborns was below the range associated with thromboembolism in patients congenitally deficient in this protein (22±9.6%, mean±SD). None of these infants had clinical or laboratory evidence of thromboembolism or DIC. In contrast to the PS antigen level PS activity measured by the ability of APC to prolong the clotting time of a modified APTT assay using PS-immunodep1eted plasma was significantly higher (77.6±14%, mean±SD, p< 0,001), suggesting a shift in PS to the free form. In fact two dimensional immunoe1ectrophoresis studies revealed the absence of protein S-C4b-BP complexes and only one precipitation indicating free PS was seen in 15 out of the 36 infants. In these 15 neonates C4b-BP was below the limit of detection by sensitive quantitative immunob1otting techniques using monoclonal or polyclonal antibodies. In the remaining 21 infants PS-C4b-BP complexes were detected, but in contrast to adult normal plasma approximately 80% of PS was found in the free form. Mixing experiments with normal human plasma and newborn’s plasma indicate that PS in neonate deficient of C4b-BP can bind normally to C4bp. Absence of C4b-BP did not correlate to gestational age. If an equilibrium distribution of PS between bound and free form regulates the cofactor activity of PS for the anticoagulant and profibrino 1ytic properties of APC in normal adults, our study demonstrates that the absence of PS-C4b-BP complexes in newborns and the presence of free PS only may contribute to the increased bleeding risk of premature infants.


Author(s):  
Vladimir Anatolievich Klimov

Monoclonal antibodies are successfully used to treat a number of viral diseases; they are produced by the plasma cells of the human immune system and are the result of a natural humoral response to the ingress of a certain antigen. Antibodies designed to target only one specific protein — in this case, the protein of the virus that causes COVID-19 — are called «monoclonal». Their purpose is to block the COVID-19 virus and prevent its penetration and replication in human cells, and their ultimate focus is on combating infectious manifestations. They are believed to cause fewer undesirable effects than convalescent plasma, which is essentially a complex of polyclonal antibodies and circulating immune complexes. Monoclonal antibodies can be synthesized in the laboratory using the blood serum of patients who have undergone this disease as a starting material. The use of monoclonal antibodies is indicated for patients with a mild and moderate form of the disease at a high risk of progression of the pathological process to a severe degree, which implies the need for hospitalization and a high probability of a fatal outcome.


1987 ◽  
Vol 104 (3) ◽  
pp. 513-518 ◽  
Author(s):  
S S Brown ◽  
A S Petzold

Polyclonal antibodies made against Dictyostelium discoideum membranes were used to block the interaction of those membranes with actin. As expected, actin interacted mostly with the internal surface of the membrane, demonstrated by the fact that whole cells could only absorb out a minor fraction of the blocking antibody. The antibody was used to show that the membrane component(s) which interacted with actin were probably integral; they could be extracted with detergent but not with solutions designed to extract peripheral membrane proteins. To identify the responsible protein(s), Western transfers of membranes were cut into fractions which were tested for their ability to absorb out the blocking activity of the antibody. We observed a single peak at a molecular weight of approximately 20,000, and thus conclude that a 20,000-mol-wt protein is a major integral membrane actin-binding protein in Dictyostelium. This approach to the identification of proteins involved in actin-membrane interaction has allowed us to make the first identification of an actin-binding membrane protein which is based on its activity in native membranes.


2020 ◽  
Vol 1868 (7) ◽  
pp. 140422 ◽  
Author(s):  
Shihua Li ◽  
Kai Yu ◽  
Dawei Wang ◽  
Qingfeng Zhang ◽  
Ze-Xian Liu ◽  
...  

1990 ◽  
Vol 111 (2) ◽  
pp. 581-588 ◽  
Author(s):  
A Cartaud ◽  
M A Ludosky ◽  
J C Courvalin ◽  
J Cartaud

Desmosomes are specialized domains of epithelial cell plasma membranes engaged in the anchoring of intermediate filaments (IF). So far, the desmosomal component(s) responsible for this binding has not been unambiguously identified. In the present work, we have examined bovine muzzle epidermis desmosomes for the presence of protein(s) structurally and functionally related to lamin B, the major receptor for IF in the nuclear envelope (Georgatos, S. D., and G. Blobel. 1987. J. Cell Biol. 105:105-115). By using polyclonal antibodies to lamin B in immunoblotting experiments, we find that a desmosomal protein of 140-kD shares epitope(s) with lamin B. Immunoelectron microscopic and urea extraction experiments show that this protein is a peripheral protein localized at the cytoplasmic side of the desmosomes (desmosomal plaques). Furthermore, this protein binds vimentin in an in vitro assay. Since this binding is inhibited by lamin B antibodies, the epitopes common to the 140-kD protein and to lamin B may be responsible for anchoring of intermediate filaments to desmosomes. These data suggest that lamin B-related proteins (see also Cartaud, A., J. C. Courvalin, M. A. Ludosky, and J. Cartaud. 1989. J. Cell Biol. 109:1745-1752) together with lamin B, provide cells with several nucleation sites, which can account for the multiplicity of IF organization in tissues.


Sign in / Sign up

Export Citation Format

Share Document