Geosynthetic clay liner gas permeability relationship with moisture content and suction under pre-conditioning stresses

Author(s):  
M Rouf ◽  
R Singh ◽  
A Bouazza ◽  
R Rowe
2016 ◽  
Vol 3 (5) ◽  
pp. 325-333 ◽  
Author(s):  
M. A. Rouf ◽  
R. M. Singh ◽  
A. Bouazza ◽  
R. K. Rowe ◽  
W. P. Gates

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1653
Author(s):  
Guofu Li ◽  
Yi Wang ◽  
Junhui Wang ◽  
Hongwei Zhang ◽  
Wenbin Shen ◽  
...  

Deep coalbed methane (CBM) is widely distributed in China and is mainly commercially exploited in the Qinshui basin. The in situ stress and moisture content are key factors affecting the permeability of CH4-containing coal samples. Therefore, considering the coupled effects of compressing and infiltrating on the gas permeability of coal could be more accurate to reveal the CH4 gas seepage characteristics in CBM reservoirs. In this study, coal samples sourced from Tunlan coalmine were employed to conduct the triaxial loading and gas seepage tests. Several findings were concluded: (1) In this triaxial test, the effect of confining stress on the permeability of gas-containing coal samples is greater than that of axial stress. (2) The permeability versus gas pressure curve of coal presents a ‘V’ shape evolution trend, in which the minimum gas permeability was obtained at a gas pressure of 1.1MPa. (3) The gas permeability of coal samples decreased exponentially with increasing moisture content. Specifically, as the moisture content increasing from 0.18% to 3.15%, the gas permeability decreased by about 70%. These results are expected to provide a foundation for the efficient exploitation of CBM in Qinshui basin.


2015 ◽  
Vol 52 (4) ◽  
pp. 395-412 ◽  
Author(s):  
R.W.I. Brachman ◽  
A. Rentz ◽  
R.K. Rowe ◽  
W.A. Take

Field observations of downslope bentonite erosion from a geosynthetic clay liner (GCL) covered by only a black geomembrane are reported for a composite liner left exposed without a protective soil cover for much longer than recommended by the GCL manufacturer. A new nondestructive, light-transmission technique developed to investigate bentonite erosion features in the field is presented. A classification system is developed to describe the type of erosion features observed. Results from five field investigations at the Queen’s University Environmental Liner Test Site (QUELTS II) are reported to quantify the onset, progression, and severity of downslope erosion for one particular geotextile-encased, needle-punched GCL for exposure periods of between 7 weeks and 1.3 years. The first significant erosion feature (type “E”with bentonite loss narrower than 2.5 cm) was observed after 6 months of exposure. Irrecoverable erosion features (type “EE” with bentonite loss wider than 2.5 cm) were observed after 12 months of exposure. These findings highlight the need to follow the manufacturer’s recommendations for timely covering of a composite liner with soil following liner installation.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Mochamad Arief Budihardjo

Morphological variations of geosynthetic clay liner (GCL) samples, hydrated with two different permeates, distilled water and NaCl solution (100 mM concentration), were observed in detail using microscopic analysis. After the GCL samples were hydrated with the NaCl solution, they were observed with an optical microscope. While the surface of the treated GCL samples was similar to the surface of the untreated GCL, a crystal deposit was found on the surface of the treated samples. Using a scanning electron microscope (SEM), a more solid appearance was observed for the bentonite particles contained in the GCL after the sample was hydrated with distilled water in comparison to the GCL sample that was hydrated with the NaCl solution. It appears that salt solution hydration results in less swelling of the bentonite particles. Furthermore, the energy-dispersive X-ray spectrometer (EDS) results showed that distilled water hydration had no effect on the distribution of the elements contained in the GCL samples. However, bound chlorine was observed, which demonstrated that the bentonite particles had absorbed the NaCl solution. In addition, changes in the hydraulic conductivity of the hydrated GCL samples were also observed.


Sign in / Sign up

Export Citation Format

Share Document