Apical Meristems

2008 ◽  
pp. 102-121
Keyword(s):  
2012 ◽  
Vol 37 (12) ◽  
pp. 2251-2260
Author(s):  
Jing-Yu GUO ◽  
Zhi-Xiong CHEN ◽  
Bing-Yao YANG ◽  
Xin-Fen CHEN ◽  
Xiang-Dong LIU ◽  
...  

2006 ◽  
Vol 37 (6) ◽  
pp. 371-374 ◽  
Author(s):  
N. M. Kaznina ◽  
G. F. Laidinen ◽  
A. F. Titov

Development ◽  
1999 ◽  
Vol 126 (3) ◽  
pp. 469-481 ◽  
Author(s):  
K. Lynn ◽  
A. Fernandez ◽  
M. Aida ◽  
J. Sedbrook ◽  
M. Tasaka ◽  
...  

Several lines of evidence indicate that the adaxial leaf domain possesses a unique competence to form shoot apical meristems. Factors required for this competence are expected to cause a defect in shoot apical meristem formation when inactivated and to be expressed or active preferentially in the adaxial leaf domain. PINHEAD, a member of a family of proteins that includes the translation factor eIF2C, is required for reliable formation of primary and axillary shoot apical meristems. In addition to high-level expression in the vasculature, we find that low-level PINHEAD expression defines a novel domain of positional identity in the plant. This domain consists of adaxial leaf primordia and the meristem. These findings suggest that the PINHEAD gene product may be a component of a hypothetical meristem forming competence factor. We also describe defects in floral organ number and shape, as well as aberrant embryo and ovule development associated with pinhead mutants, thus elaborating on the role of PINHEAD in Arabidopsis development. In addition, we find that embryos doubly mutant for PINHEAD and ARGONAUTE1, a related, ubiquitously expressed family member, fail to progress to bilateral symmetry and do not accumulate the SHOOT MERISTEMLESS protein. Therefore PINHEAD and ARGONAUTE1 together act to allow wild-type growth and gene expression patterns during embryogenesis.


Nature ◽  
1950 ◽  
Vol 166 (4231) ◽  
pp. 954-955 ◽  
Author(s):  
G. W. IVENS ◽  
G. E. BLACKMAN

2005 ◽  
Vol 130 (6) ◽  
pp. 793-798
Author(s):  
Miki Nakata ◽  
Nobuo Sugiyama ◽  
Tanachai Pankasemsuk

The structure and developmental patterns of inflorescence of longan (Dimocarpus longan Lour.) were studied microscopically and by the naked eye. In inflorescence of longan, compound dichasia are arranged on three to four orders of monopodial axes without the formation of terminal flowers, indicating that longan inflorescence is pleiothyrse; cymose partial inflorescences are arranged on more than two monopodial axes. Most of the monopodial axes had differentiated by the end of November just before the cool season. The first sign of inflorescence formation was the appearance of bract primordia at apical meristems of the preformed monopodial axes, with lateral axes preceding the main axes. Dichasia were formed in the axils of bract primordia, and the formation of bracts and dichasia continued. Bract appearance can be detected by the naked eye 1 week after microscopically detected bract appearance. Shoots with intermediate characteristics between the inflorescence and the vegetative shoots were formed; dichasia were formed on the lateral axes, but not on the main axes in intermediate shoots. These results suggest that apical meristems on the terminal shoot produce monopodial axes, together with foliage leaf primordia, before floral induction, but produce bract primordia and compound dichasia, which are composed of sympodial axes, after floral induction.


Sign in / Sign up

Export Citation Format

Share Document