Determination of resin components for continuous Digital Light Processing (cDLP) additive manufacture of resorbable tissue engineering scaffolds

Author(s):  
D Dean ◽  
E Mott ◽  
X Luo ◽  
M Busso ◽  
M Wang ◽  
...  
2012 ◽  
Vol 101A (1) ◽  
pp. 138-144 ◽  
Author(s):  
Krzysztof W. Luczynski ◽  
Tomasz Brynk ◽  
Barbara Ostrowska ◽  
Wojciech Swieszkowski ◽  
Roland Reihsner ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2420 ◽  
Author(s):  
Ali Bagheri ◽  
Irene Buj-Corral ◽  
Miquel Ferrer ◽  
Maria Magdalena Pastor ◽  
Francesc Roure

In tissue engineering, scaffolds can be obtained by means of 3D printing. Different structures are used in order to reduce the stiffness of the solid material. The present article analyzes the mechanical behavior of octet-truss microstructures. Three different octet structures with strut radii of 0.4, 0.5, and 0.6 mm were studied. The theoretical relative densities corresponding to these structures were 34.7%, 48.3%, and 61.8%, respectively. Two different values for the ratio of height (H) to width (W) were considered, H/W = 2 and H/W = 4. Several specimens of each structure were printed, which had the shape of a square base prism. Compression tests were performed and the elasticity modulus (E) of the octet-truss lattice-structured material was determined, both, experimentally and by means of Finite Element Methods (FEM). The greater the strut radius, the higher the modulus of elasticity and the compressive strength. Better agreement was found between the experimental and the simulated modulus of elasticity results for H/W = 4 than for H/W = 2. The octet-truss lattice can be considered to be a promising structure for printing in the field of tissue engineering.


2019 ◽  
Author(s):  
AS Arampatzis ◽  
K Theodoridis ◽  
E Aggelidou ◽  
KN Kontogiannopoulos ◽  
I Tsivintzelis ◽  
...  

2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document