HYDROXYAPATITE, ALGINATE, AND CHITOSAN FOR BONE SCAFFOLDS: SPECTROSCOPY STUDY

2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.

2018 ◽  
pp. 461-475 ◽  
Author(s):  
Ozan Karaman

The limitation of orthopedic fractures and large bone defects treatments has brought the focus on fabricating bone grafts that could enhance ostegenesis and vascularization in-vitro. Developing biomimetic materials such as mineralized nanofibers that can provide three-dimensional templates of the natural bone extracellular-matrix is one of the most promising alternative for bone regeneration. Understanding the interactions between the structure of the scaffolds and cells and therefore the control cellular pathways are critical for developing functional bone grafts. In order to enhance bone regeneration, the engineered scaffold needs to mimic the characteristics of composite bone ECM. This chapter reviews the fabrication of and fabrication techniques for fabricating biomimetic bone tissue engineering scaffolds. In addition, the chapter covers design criteria for developing the scaffolds and examples of enhanced osteogenic differentiation outcomes by fabricating biomimetic scaffolds.


2019 ◽  
Vol 6 (3) ◽  
pp. 67 ◽  
Author(s):  
Victor Häussling ◽  
Sebastian Deninger ◽  
Laura Vidoni ◽  
Helen Rinderknecht ◽  
Marc Ruoß ◽  
...  

Human adipose-derived mesenchymal stem/stromal cells (Ad-MSCs) have great potential for bone tissue engineering. Cryogels, mimicking the three-dimensional structure of spongy bone, represent ideal carriers for these cells. We developed poly(2-hydroxyethyl methacrylate) cryogels, containing hydroxyapatite to mimic inorganic bone matrix. Cryogels were additionally supplemented with different types of proteins, namely collagen (Coll), platelet-rich plasma (PRP), immune cells-conditioned medium (CM), and RGD peptides (RGD). The different protein components did not affect scaffolds’ porosity or water-uptake capacity, but altered pore size and stiffness. Stiffness was highest in scaffolds with PRP (82.3 kPa), followed by Coll (55.3 kPa), CM (45.6 kPa), and RGD (32.8 kPa). Scaffolds with PRP, CM, and Coll had the largest pore diameters (~60 µm). Ad-MSCs were osteogenically differentiated on these scaffolds for 14 days. Cell attachment and survival rates were comparable for all four scaffolds. Runx2 and osteocalcin levels only increased in Ad-MSCs on Coll, PRP and CM cryogels. Osterix levels increased slightly in Ad-MSCs differentiated on Coll and PRP cryogels. With differentiation alkaline phosphatase activity decreased under all four conditions. In summary, besides Coll cryogel our PRP cryogel constitutes as an especially suitable carrier for bone tissue engineering. This is of special interest, as this scaffold can be generated with patients’ PRP.


NANO ◽  
2012 ◽  
Vol 07 (04) ◽  
pp. 1230004 ◽  
Author(s):  
ZHE WANG ◽  
ZHURONG TANG ◽  
FANGZHU QING ◽  
YOULIANG HONG ◽  
XINGDONG ZHANG

To repair bone defects, an important approach is to fabricate tissue engineering scaffolds as substitutions to replace auto-/allologous bones. Currently, processing a biomaterial into three-dimensional porous scaffolds and incorporating the calcium phosphate (Ca–P) nanoparticles into scaffolds profile two main characteristics of bone tissue engineering scaffolds. Based on this fact, in this paper we describe the design principles of the Ca–P nanoparticle-based and porous bone tissue engineering scaffolds. Then we summarize a variety of the Ca–P nanoparticle-based scaffolds, including discussion of the integration of the Ca–P nanoparticles with ceramics and polymers, followed by introduction of safety of the Ca–P nanoparticles in scaffolds.


Author(s):  
Ozan Karaman

The limitation of orthopedic fractures and large bone defects treatments has brought the focus on fabricating bone grafts that could enhance ostegenesis and vascularization in-vitro. Developing biomimetic materials such as mineralized nanofibers that can provide three-dimensional templates of the natural bone extracellular-matrix is one of the most promising alternative for bone regeneration. Understanding the interactions between the structure of the scaffolds and cells and therefore the control cellular pathways are critical for developing functional bone grafts. In order to enhance bone regeneration, the engineered scaffold needs to mimic the characteristics of composite bone ECM. This chapter reviews the fabrication of and fabrication techniques for fabricating biomimetic bone tissue engineering scaffolds. In addition, the chapter covers design criteria for developing the scaffolds and examples of enhanced osteogenic differentiation outcomes by fabricating biomimetic scaffolds.


2007 ◽  
Vol 330-332 ◽  
pp. 991-994 ◽  
Author(s):  
M. Ngiam ◽  
T.R. Hayes ◽  
S. Dhara ◽  
B. Su

Chemical treatment of polycaprolactone was carried out to bioactivite the biodegradable polymer for bone tissue engineering application. The results show that surface modifications are necessary to introduce functional groups such as carboxylic groups for the effective induction of apatite nucleation, prior to SBF treatment. The functional groups, acting as anchors between the polymer and the apatite nuclei, dictate the duration of the induction period need for apatite nucleation. After the surface treatment with sodium hydroxide solution, the apatite nuclei will form and grow spontaneously into a dense and uniform layer of apatite, by taking up Ca2+ and PO4 2- ions that are present in the SBF, as SBF is supersaturated with respect to apatite. Similar surface treatment was applied to electrospun PCL nanofibres. Biomimetic apatite/PCL nanofibres were formed which can potentially be used as bone tissue engineering scaffolds.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1773 ◽  
Author(s):  
Christian Polley ◽  
Thomas Distler ◽  
Rainer Detsch ◽  
Henrik Lund ◽  
Armin Springer ◽  
...  

The prevalence of large bone defects is still a major problem in surgical clinics. It is, thus, not a surprise that bone-related research, especially in the field of bone tissue engineering, is a major issue in medical research. Researchers worldwide are searching for the missing link in engineering bone graft materials that mimic bones, and foster osteogenesis and bone remodeling. One approach is the combination of additive manufacturing technology with smart and additionally electrically active biomaterials. In this study, we performed a three-dimensional (3D) printing process to fabricate piezoelectric, porous barium titanate (BaTiO3) and hydroxyapatite (HA) composite scaffolds. The printed scaffolds indicate good cytocompatibility and cell attachment as well as bone mimicking piezoelectric properties with a piezoelectric constant of 3 pC/N. This work represents a promising first approach to creating an implant material with improved bone regenerating potential, in combination with an interconnected porous network and a microporosity, known to enhance bone growth and vascularization.


2007 ◽  
Vol 544-545 ◽  
pp. 793-796
Author(s):  
Lin Cheng ◽  
Yu Bao Li ◽  
Yi Zuo ◽  
Gang Zhou ◽  
Hua Nan Wang ◽  
...  

Scaffold in bone tissue engineering must have a three-dimensional (3-D) interconnected porous structure acting as a template for bone tissue regeneration, and material fabricating the scaffold must be biocompatible and can provide structural support during bone growth and remodeling at the same time. In this paper, a method of phase separation and particle leaching combined (PS/PL) was used to prepare porous scaffold of nano-hydroxyapatite and polyamide6 (n-HA/PA6) composite. The results show that the scaffold prepared by PS/PL has not only interconnected macropores of 100~300 μm, but also micropores on the walls of macropores, and PS/PL scaffold is more interconnective in compare with phase separation (PS) scaffold. When the porosity of the scaffold is about 79%, its compressive strongth is about 3.27 MPa, that is similar to the human cancellous bone(2~10MPa). Ethanol has some effect on hydrogen bonds, but fabricating method will not change the chemical component of the composite. The porous scaffold is prospect for bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document