Spring discharge and groundwater flow systems in sedimentary and ophiolitic hard rock aquifers: Experiences from Northern Apennines (Italy)

2014 ◽  
pp. 151-168
2008 ◽  
Vol 16 (8) ◽  
pp. 1577-1599 ◽  
Author(s):  
Alessandro Gargini ◽  
Valentina Vincenzi ◽  
Leonardo Piccinini ◽  
Gian Maria Zuppi ◽  
Paolo Canuti

1995 ◽  
Vol 31 (8) ◽  
pp. 375-378 ◽  
Author(s):  
F. H. Kloosterman ◽  
R. J. Stuurman ◽  
R. van der Meijden

The project “National Groundwater Flow System Analysis” in The Netherlands was initiated in 1991 and will last until 1995. Financed by three Dutch Ministries, the project aims at the mapping of the regional groundwater flow systems to support policy makers at national levels and water/nature resources management. Much emphasis is put on biotic aspects such as the relation between groundwater and patterns in vegetation. The results are used in a detailed flow system analysis of the eco-hydrological valuable drainage basin of the brooks Beerze and Reusel in the southern parts of the country. In this study vegetation patterns and hydrological situations were analyzed in present and in historical settings to unravel the changes in the last decades leading to severe deterioration of habitats and wetlands. Historical data on flora from the beginning of this century on the basis of km-grid cells show a strong relation with the historical exfiltration areas where deep alkaline groundwaters rich in calcium-carbonate emerged. Agriculture and man-made changes to the natural drainage systems have led to diminishing nature values. Combining a sound understanding of the groundwater flow systems and the changes in the last decades produced a number of practical and viable measures to restore historical wetland settings and to preserve existing ones.


Author(s):  
Stefano Segadelli ◽  
Maria Filippini ◽  
Anna Monti ◽  
Fulvio Celico ◽  
Alessandro Gargini

AbstractEstimation of aquifer recharge is key to effective groundwater management and protection. In mountain hard-rock aquifers, the average annual discharge of a spring generally reflects the vertical aquifer recharge over the spring catchment. However, the determination of average annual spring discharge requires expensive and challenging field monitoring. A power-law correlation was previously reported in the literature that would allow quantification of the average annual spring discharge starting from only a few discharge measurements in the low-flow season, in a dry summer climate. The correlation is based upon the Maillet model and was previously derived by a 10-year monitoring program of discharge from springs and streams in hard-rock aquifers composed of siliciclastic and calcareous turbidites that did not have well defined hydrogeologic boundaries. In this research, the same correlation was applied to two ophiolitic (peridotitic) hard-rock aquifers in the Northern Apennines (Northern Italy) with well-defined hydrogeologic boundaries and base-outflow springs. The correlation provided a reliable estimate of the average annual spring discharge thus confirming its effectiveness regardless of bedrock lithology. In the two aquifers studied, the measurable annual outputs (i.e. sum of average annual spring discharges) could be assumed equal to the annual inputs (i.e. vertical recharge) based on the clear-cut aquifer boundaries and a quick groundwater circulation inferable from spring water parameters. Thus, in such setting, the aforementioned correlation also provided an estimate of the annual aquifer recharge allowing the assessment of coefficients of infiltration (i.e. ratio between aquifer recharge and total precipitation) ranging between 10 and 20%.


Sign in / Sign up

Export Citation Format

Share Document