Non-zero fixed pitch angle effect on performance of Darrieus rotor

2014 ◽  
pp. 249-254
Author(s):  
Hoseyn A. Amiri ◽  
Rouzbeh Shafaghat ◽  
Rezvan Alamian ◽  
Seyed Mohamad Taheri ◽  
Mostafa Safdari Shadloo

Purpose The purpose of this paper is to design, investigate and optimize a horizontal axis tidal turbine (HATT) using computer-aided numerical simulation and computational fluid dynamics (CFD). This is the first step of research and development (R&D) for implementation in the Persian Gulf condition. To do so, suitable locations are reviewed. Then, the optimization is focused on determining the optimum fixed pitch angle (β) of a three-bladed HATT based on the widespread multiple reference frame (MRF) technique to calculate power and thrust coefficients at different operational rotating speeds. Design/methodology/approach To simplify the problem and reducing the computational costs due to cyclic symmetry only one blade, accordingly one-third of the whole computational domain is considered in the modeling. Due to flow’s nature involving rotating, separation and recirculation, a realizable κ-ε turbulence model with standard wall function is selected to capture flow characteristics influenced by the rotor and near the wall region. Simulations are conducted for two free-stream velocities, then compared with their dependencies through the dimensionless tip speed ratio (TSR) parameter. Findings The validation process of the simulations is carried out by the use of AeroDyn BEM code, which has been evaluated by comparing with two experimental data. As results, the highest coefficient of power is achieved at ß = 19.3° at TSR = 4 with the value around 0.41 and 0.816 for thrust coefficient. Furthermore, to comprehend the rotor’s performance and simulation method, flow characteristics due to the rise in angular velocity is discussed in detail. Moreover, the major phenomenon, cavitation occurrence, is also checked at the critical situation where it is found to be safe. Originality/value By comparing and evaluating the results to other HATTs, it implies that the proposed rotor of this study is feasible and proved by CFD evaluation at this step. However, the current rotor is awaiting a justification through experimental assessment.


Author(s):  
Teresa Parra-Santos ◽  
Diego J. Palomar Trullen ◽  
Armando Gallegos ◽  
Cristobal N. Uzarraga ◽  
Maria Regidor-Sanchez ◽  
...  

The performance of a Vertical Axis Wind Turbine (VAWT) is numerically analyzed. Influence of fixed pitch angle is studied to get tendencies on the characteristic curves. The set up corresponds with an H-Darrieus with three straight NACA airfoils attached to a vertical shaft. Two-dimensional, transient, Navier Stokes equations are solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. At least three revolutions must be simulated to get the periodic behaviour. Transition SST turbulence model has been chosen based on literature. Pitch angles of −6° and −10° have been analyzed with Tip Speed Ratios ranging from 0.7 and 1.6. The pitch angle of −10° improves the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are shown.


2013 ◽  
Vol 34 ◽  
pp. 362-370 ◽  
Author(s):  
Phlearn Jansuya ◽  
Yuttana Kumsuwan

2019 ◽  
Vol 43 (6) ◽  
pp. 2123-2134 ◽  
Author(s):  
Abdelouahab Benzerdjeb ◽  
Bouabdellah Abed ◽  
Habib Achache ◽  
Mohammed K. Hamidou ◽  
Alaxender M. Gorlov

2018 ◽  
Vol 22 (5) ◽  
pp. 141-154 ◽  
Author(s):  
Edwin Lenin Chica Arrieta ◽  
Cristian Cardona-Mancilla ◽  
J. Slayton ◽  
F. Romero ◽  
Edwar Torres ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document