Optimal design of curved folded plates by optimality criteria method

2014 ◽  
pp. 251-256
Author(s):  
B Balogh ◽  
J Lógó
2019 ◽  
pp. 109-115
Author(s):  
Didmanidze Ibraim ◽  
Donadze Mikheil

The article deals with such an important selection of the elements of electronic scheme of the given configuration, when the certain requirements of technical task are satisfied and at the same time the selected optimality criteria reach the extreme value. The gives task has been solved by the method of one-criterion optimization, in particular, the method of center gravity. To formalize the given scheme we have compiled a mathematical model of optimization, which considers the requirements of technical task. The optimal design task of the presented electronic scheme was brought to the task of multi criteria optimization. The computational experiments have been resulted in the Pareto-optimal solutions, from which there was selected a compromise on that corresponds to the minimum capacity, required by the scheme. According to the optimal values of resistors, we have conducted a computerized analysis of the transient process of the given electronic scheme with the help of a computer program Electronics Workbench.


2019 ◽  
Vol 5 (344) ◽  
pp. 17-27
Author(s):  
Małgorzata Graczyk ◽  
Bronisław Ceranka

The problem of determining unknown measurements of objects in the model of spring balance weighing designs is presented. These designs are considered under the assumption that experimental errors are uncorrelated and that they have the same variances. The relations between the parameters of weighing designs are deliberated from the point of view of optimality criteria. In the paper, designs in which the product of the variances of estimators is possibly the smallest one, i.e. D‑optimal designs, are studied. A highly D‑efficient design in classes in which a D‑optimal design does not exist are determined. The necessary and sufficient conditions under which a highly efficient design exists and methods of its construction, along with relevant examples, are introduced.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 678
Author(s):  
Zijun Wu ◽  
Renbin Xiao

This work presents a topology optimization method for symmetric hierarchical lattice structures with substructuring. In this method, we define two types of symmetric lattice substructures, each of which contains many finite elements. By controlling the materials distribution of these elements, the configuration of substructure can be changed. And then each substructure is condensed into a super-element. A surrogate model based on a series of super-elements can be built using the cubic B-spline interpolation. Here, the relative density of substructure is set as the design variable. The optimality criteria method is used for the updating of design variables on two scales. In the process of topology optimization, the symmetry of microstructure is determined by self-defined microstructure configuration, while the symmetry of macro structure is determined by boundary conditions. In this proposed method, because of the educing number of degree of freedoms on macrostructure, the proposed method has high efficiency in optimization. Numerical examples show that both the size and the number of substructures have essential influences on macro structure, indicating the effectiveness of the presented method.


2021 ◽  
Vol 160 ◽  
pp. 192-204
Author(s):  
Krešimir Burazin ◽  
Ivana Crnjac ◽  
Marko Vrdoljak

2018 ◽  
Vol 27 (3-4) ◽  
Author(s):  
Naman Jain

AbstractTopology optimization is a mathematical approach that optimizes the layout for the given design constraints such as loading and boundary conditions so that the optimum design obtained performs its function. In different types of loading conditions such as single load or multiple load topological optimization result in the best use of a material for a body in given volume constraints. In topological optimization the structural compliance is minimized while satisfying a constraint on the volume of the structure. This paper represents the topological optimization of the fork-end (double eye) of a knuckle joint with the objective to reduce the mass of an existing fork-end of a knuckle joint of an automobile or locomotive by applying the optimization technique. Reducing the weight of an automobile part will result in the overall weight reduction of a vehicle, thus, its energy consumption demands decrease thereby improving its fuel efficiency. The topological optimization was done using a finite element solver, ANSYS. The ANSYS Parametric Design Language was employed for utilizing the topological optimization capabilities of the commonly used finite element solver ANSYS. Solid92 elements were used to model and mesh the fork end of the knuckle joint in ANSYS. The optimality criteria method was used for topological optimizing the fork end of a knuckle joint.


Sign in / Sign up

Export Citation Format

Share Document