Optimality criteria method in 2D linearized elasticity problems

2021 ◽  
Vol 160 ◽  
pp. 192-204
Author(s):  
Krešimir Burazin ◽  
Ivana Crnjac ◽  
Marko Vrdoljak
Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 678
Author(s):  
Zijun Wu ◽  
Renbin Xiao

This work presents a topology optimization method for symmetric hierarchical lattice structures with substructuring. In this method, we define two types of symmetric lattice substructures, each of which contains many finite elements. By controlling the materials distribution of these elements, the configuration of substructure can be changed. And then each substructure is condensed into a super-element. A surrogate model based on a series of super-elements can be built using the cubic B-spline interpolation. Here, the relative density of substructure is set as the design variable. The optimality criteria method is used for the updating of design variables on two scales. In the process of topology optimization, the symmetry of microstructure is determined by self-defined microstructure configuration, while the symmetry of macro structure is determined by boundary conditions. In this proposed method, because of the educing number of degree of freedoms on macrostructure, the proposed method has high efficiency in optimization. Numerical examples show that both the size and the number of substructures have essential influences on macro structure, indicating the effectiveness of the presented method.


2018 ◽  
Vol 27 (3-4) ◽  
Author(s):  
Naman Jain

AbstractTopology optimization is a mathematical approach that optimizes the layout for the given design constraints such as loading and boundary conditions so that the optimum design obtained performs its function. In different types of loading conditions such as single load or multiple load topological optimization result in the best use of a material for a body in given volume constraints. In topological optimization the structural compliance is minimized while satisfying a constraint on the volume of the structure. This paper represents the topological optimization of the fork-end (double eye) of a knuckle joint with the objective to reduce the mass of an existing fork-end of a knuckle joint of an automobile or locomotive by applying the optimization technique. Reducing the weight of an automobile part will result in the overall weight reduction of a vehicle, thus, its energy consumption demands decrease thereby improving its fuel efficiency. The topological optimization was done using a finite element solver, ANSYS. The ANSYS Parametric Design Language was employed for utilizing the topological optimization capabilities of the commonly used finite element solver ANSYS. Solid92 elements were used to model and mesh the fork end of the knuckle joint in ANSYS. The optimality criteria method was used for topological optimizing the fork end of a knuckle joint.


Author(s):  
Aravind Alwan ◽  
G. K. Ananthasuresh

In this paper, we present a novel formulation for performing topology optimization of electrostatically actuated constrained elastic structures. We propose a new electrostatic-elastic formulation that uses the leaky capacitor model and material interpolation to define the material state at every point of a given design domain continuously between conductor and void states. The new formulation accurately captures the physical behavior when the material in between a conductor and a void is present during the iterative process of topology optimization. The method then uses the optimality criteria method to solve the optimization problem by iteratively pushing the state of the domain towards that of a conductor or a void in the appropriate regions. We present examples to illustrate the ability of the method in creating the stiffest structure under electrostatic force for different boundary conditions.


2013 ◽  
Vol 288 ◽  
pp. 193-201
Author(s):  
Xiu Ye Wang ◽  
Han Zhao ◽  
Zu Fang Zhang ◽  
Yong Wang

The basic mathematical model of topology optimization of continuum structures is introduced at first. Then the authors focus on reviewing the development of PDE methods and optimization algorithms. This paper details the development and applications of Finite Element Method, Boundary Element Method and Finite Volume Method. This paper also illustrates several typical applications and achievements of optimization algorithms, such as Optimality Criteria method, mathematical programming method and intelligent algorithm. Based on our research, this paper finally summarizes the process of the structural topology optimization and describes the directions of the topology optimization in the field of mechanical digital design.


Sign in / Sign up

Export Citation Format

Share Document