Recent Advances in Bacteria-Assisted Phytoremediation of Heavy Metals from Contaminated Soil

2021 ◽  
Author(s):  
Fahimeh Zanganeh ◽  
Ava heidari ◽  
Adel Sepehr ◽  
Abbas Rohani

Abstract In recent decades, soil contamination with heavy metals has become an environmental crisis due to their long-term stability and adverse biological effects. Therefore, bioremediation is an eco-friendly technology to remediate contaminated soil, that its efficiency requires further research. This study was conducted to comparatively investigate two strategies, including bioaugmentation by using Oscillatoria sp and bioaugmentation assisted phytoremediation by using Oscillatoria sp -portulaca oleracea for the bioremediation of heavy metal (Cr (III), Cr (VI), Fe, Al, and Zn) contaminated soil at 180 days. To facilitate the remediation process, various quantities of biochar (0, 0.5, 2, and 5% (w/w)) were used in the experiments. The results of the bioaugmentation showed a significant improvement in chlorophyll a, nitrogen, organic carbon contents of soil and decrease all heavy metal bioavailability and EC of soil. The remediation efficiency test using plants proved the success of remediation treatments. Moreover, the findings of bioaugmentation-assisted phytoremediation displayed an improvement in soil fertility and a substantial reduction in the bioavailable fraction of heavy metals, especially in soil amended with 5% biochar. Cyanobacteria inoculation and biochar amendment dramatically enhanced the root lengths and shoot heights of portulaca oleracea while it significantly decreased their heavy metal accumulation compared to the control. For all heavy metals, TF and BAC (except Zn) values ​​were found to be less than 1.0 at all treatments, illustrated the successful phytoextraction by the P. In conclusion, cyanobacteria inoculation along with biochar addition enhanced the TI quantities while diminished BAC and BCF values, suggesting the feasibility their applying in heavy metal contaminated soil for the facilitation of phytoremediation and their ability in pollutant immobilization.


2015 ◽  
Vol 5 (3) ◽  
pp. 1-6 ◽  
Author(s):  
Zainab Siddiqui ◽  
◽  
S.M Ali Jawaid ◽  
Sandeep Vishen ◽  
Shreya Verma ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
pp. 333-347
Author(s):  
Shahid Sher ◽  
Abdul Ghani ◽  
Sikandar Sultan ◽  
Abdul Rehman

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


Author(s):  
Awadhesh Kumar Shukla ◽  
Amit Kishore Singh ◽  
Anjney Sharma

2014 ◽  
Vol 22 (4) ◽  
pp. 2505-2514 ◽  
Author(s):  
Abid Ullah ◽  
Hafsa Mushtaq ◽  
Hazrat Ali ◽  
Muhammad Farooq Hussain Munis ◽  
Muhammad Tariq Javed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document