Performance of tube-based moment connections under cyclic loads

2015 ◽  
pp. 549-556
Author(s):  
D Wei ◽  
J McCormick ◽  
M Hartigan ◽  
M Fadden
2019 ◽  
Vol 85 (1(I)) ◽  
pp. 64-71 ◽  
Author(s):  
M. M. Gadenin

The cycle configuration at two-frequency loading regimes depends on the number of parameters including the absolute values of the frequencies and amplitudes of the low-frequency and high-frequency loads added during this mode, the ratio of their frequencies and amplitudes, as well as the phase shift between these harmonic components, the latter having a significant effect only with a small ratio of frequencies. Presence of such two-frequency regimes or service loading conditions for parts of machines and structures schematized by them can significantly reduce their endurance. Using the results of experimental studies of changes in the endurance of a two-frequency loading of specimens of cyclically stable, cyclically softened and cyclically hardened steels under rigid conditions we have shown that decrease in the endurance under the aforementioned conditions depends on the ratio of frequencies and amplitudes of operation low-frequency low-cycle and high-frequency vibration stresses, and, moreover, the higher the level of the ratios of amplitudes and frequencies of those stacked harmonic processes of loading the greater the effect. It is shown that estimation of such a decrease in the endurance compared to a single frequency loading equal in the total stress (strains) amplitudes can be carried out using an exponential expression coupling those endurances through a parameter (reduction factor) containing the ratio of frequencies and amplitudes of operation cyclic loads and characteristic of the material. The reduction is illustrated by a set of calculation-experimental curves on the corresponding diagrams for each of the considered types of materials and compared with the experimental data.


A study review of aging polymer composite materials (PCM) under different heat-moisture conditions or water exposure with the sequential or parallel influence of static or cyclic loads in laboratory conditions is presented. The influence of tension and bending loads is compared. Conditions of the different load influence on parameters of carbon-reinforced plastics and glass-reinforced plastics are discussed. Equipment and units for climatic tests of PCM under loading are described. Simulation examples of indices of mechanical properties of PCM under the influence of environment and loads are shown.


A study review of aging polymer composite materials (PCM) under different heat-moisture conditions or water exposure with the sequential or parallel influence of static or cyclic loads in laboratory conditions is presented. The influence of tension and bending loads is compared. Conditions of the different load influence on parameters of carbon-reinforced plastics and glass-reinforced plastics are discussed. Equipment and units for climatic tests of PCM under loading are described. Simulation examples of indices of mechanical properties of PCM under the influence of environment and loads are shown.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4092
Author(s):  
Kamil Bacharz ◽  
Barbara Goszczyńska

The paper reports the results of a comparative analysis of the experimental shear capacity obtained from the tests of reinforced concrete beams with various static schemes, loading modes and programs, and the shear capacity calculated using selected models. Single-span and two-span reinforced concrete beams under monotonic and cyclic loads were considered in the analysis. The computational models were selected based on their application to engineering practice, i.e., the approaches implemented in the European and US provisions. Due to the changing strength characteristics of concrete, the analysis was also focused on concrete contribution in the shear capacity of reinforced concrete beams in the cracked phase and on the angle of inclination of diagonal struts. During the laboratory tests, a modern ARAMIS digital image correlation (DIC) system was used for tracking the formation and development of diagonal cracks.


Author(s):  
Yifan Zhou ◽  
Jian Hu ◽  
Pingping Zhao ◽  
Wenlei Zhang ◽  
Zhigang Suo ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 436
Author(s):  
Liang Liu ◽  
Jian He ◽  
Yaoge Dong ◽  
Hongbo Guo

β-NiAl coatings on a superalloy substrate will inevitably result in severe rumpling at elevated temperatures; however, the associated rumpling mechanisms are not completely understood. The scale rumpling behavior of a β-NiAlHf coating deposited by electron beam physical vapor deposition (EB-PVD) on single crystal superalloy IC21 was investigated in this work. Some internal factors, including the mismatch in the coefficient of thermal expansion and the stress induced by the growth of oxide scale and the phase transformation, were taken into consideration. The thermal mismatch stress between the coating and substrate was the main internal factor responsible for rumpling behavior during thermal cyclic loads, while the phase degradation from β-NiAl to γ’-Ni3Al in the coating played a dominant role during static thermal loads.


2019 ◽  
Vol 19 (6) ◽  
pp. 1767-1784 ◽  
Author(s):  
Masoud Hoseinzadeh Asl ◽  
Mahsa Saeidzadeh ◽  
Seyedbabak Momenzadeh

Sign in / Sign up

Export Citation Format

Share Document