Engineering properties of Self-Compacting Concrete with stainless steel slags

2016 ◽  
pp. 341-345
Author(s):  
Yeong-Nain Sheen ◽  
Her-Yung Wang ◽  
Li-Jeng Huang ◽  
Te-Ho Sun
2016 ◽  
Vol 142 ◽  
pp. 79-86 ◽  
Author(s):  
Yeong-nain Sheen ◽  
Li-Jeng Huang ◽  
Te-Ho Sun ◽  
Duc-Hien Le

Author(s):  
Yeong-Nain Sheen ◽  
Duc-Hien Le ◽  
My Ngoc-Tra Lam

Recently, stainless steel slag -a byproduct of manufacturing stainless steel is accepted as a cementitious material, the chemical characteristics of which are highly variant. This study reuses two types of stainless steel reducing slag with specific surface area of 1766 cm2/g (S1) and 7970 cm2/g (S2) in developing self-compacting concrete (SCC). Particularly, two S2-blended SCCs incorporating with S1 and fly ash as fillers (calling as S-mix and F-mix) were prepared for a comparative investigation. In both SCCs, ordinary Portland cement was replaced by S2 with various ratios (from 0 % to 50 %, increment 10 %). Testing results show that in fresh state, the F-mix exhibits higher workability and longer initial setting time than those of S-mix. In hardened state, 10 % compressive strength loss was realized as increasing S2 content up to 30 % in the both SCCs; the strength of F-mix is up to 1.9 times of S-mix at the same rate of S2 replacement. Water absorption of the F-mix was below 3 %, suggested as a “good” quality concrete; whilst the S-mix could be longs to an “average” one. Resistivity and sulfate resistance of F-mix are considerably higher than those of S-mix. Moreover, based on the obtained data, compressive strength and electrical resistivity are correlated well with a logarithmic form.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3945
Author(s):  
Julia Rosales ◽  
Francisco Agrela ◽  
José Luis Díaz-López ◽  
Manuel Cabrera

This work develops the manufacture of self-compacting concrete (SCC) with 50% cement reduction. As an alternative binder to cement, the viability of using an alkali-activated combination of stainless steel slag (SSS) and fly ash (FA) has been demonstrated. SSS was processed applying three different treatments. Binders were manufactured mixing 35% SSS with 65% FA, as precursors, and a hydroxide activating solution. This binder was replaced by the 50% cement for the manufacture of SCC. The results obtained show good mechanical properties and durability. The study shows a reduction in the use of cement in the manufacture of SCC reusing two wastes.


2019 ◽  
Author(s):  
Phani N. Ramamurthy

Large-scale efforts are needed for conservation of natural sand whose resources are reducing day by day and legal complications are making it difficult to meet the demand. So, self-compacting concrete (SCC) is an innovative concrete that does not require vibration for placing and compaction. It is able to flow under its own weight, completely filling formwork and achieving full compaction, even in the presence of congested reinforcement. The hardened concrete is dense, homogeneous and has the same engineering properties and durability as traditional vibrated concrete. Complex shape of concrete structures and densely arranged bars make it more difficult to use a vibrator. Vibratory compaction is noisy and deleterious to the health of construction workers, as well as an annoyance to people in the neighborhood. In remote areas it is difficult to find skilled workers to carry out the compacting work at construction sites. This paper presents the progress of the research on different harden properties of Self Compacting Concrete using the Ordinary Portland Cement “Ultratek” made and low-calcium fly ash from Birla Glass, Kosamba, Gujarat, as binder materials in making the concrete mixes along with other ingredients locally available. Results indicated increase in workability for all the cases over control concrete. Concrete with fly ash was also found to be about 25% economical when cost per N/mm2 was compared. Based on experimental results correlations are developed to predict Compressive Strength, Flexural strength, cost, Slump and Dry Density for percentage sand replacement with fly ash. Available online at https://int-scientific-journals.com


Sign in / Sign up

Export Citation Format

Share Document