Role of Oxidative Damage in Neurodegeneration with Brain Iron Accumulation Disorders

2015 ◽  
Vol 36 (5) ◽  
pp. 469-476 ◽  
Author(s):  
Teresa A. Szyszko ◽  
Joel T. Dunn ◽  
Michael J. O’Doherty ◽  
Laurence Reed ◽  
Jean-Pierre Lin

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Michael Khalil ◽  
Charlotte Teunissen ◽  
Christian Langkammer

Increased iron deposition might be implicated in multiple sclerosis (MS). Recent development of MRI enabled to determine brain iron levels in a quantitative manner, which has put more interest on studying the role of iron in MS. Evidence for abnormal iron homeostasis in MS comes also from analyses of iron and iron-related proteins in CSF and blood and postmortem MS brain sections. However, it is not yet clear if iron accumulation is implicated in MS pathology or merely reflects an epiphenomenon. Further interest has been generated by the idea of chronic cerebrospinal venous insufficiency that might be associated with brain iron accumulation due to a reduction in venous outflow, but its existence and etiologic role in MS are currently controversially debated. In future studies, combined approaches applying quantitative MRI together with CSF and serum analyses of iron and iron-related proteins in a clinical followup setting might help to elucidate the implication of iron accumulation in MS.


2013 ◽  
Vol 34 (4) ◽  
pp. 797-812 ◽  
Author(s):  
Nadja Schröder ◽  
Luciana Silva Figueiredo ◽  
Maria Noêmia Martins de Lima

2013 ◽  
Vol 44 (02) ◽  
Author(s):  
E Giagkou ◽  
S Lutz ◽  
U Schara ◽  
K Becker ◽  
C Möller-Hartmann

2016 ◽  
Vol 10 (3) ◽  
pp. 178-180
Author(s):  
Menekse Sila Yazar ◽  
Nurhan Fistikci ◽  
Ozlem Devrim Balaban ◽  
Nezih Eradamlar ◽  
Latif Alpkan

2020 ◽  
Vol 21 (5) ◽  
pp. 477-498
Author(s):  
Yongfeng Chen ◽  
Xingjing Luo ◽  
Zhenyou Zou ◽  
Yong Liang

Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients’ life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.


Neurogenetics ◽  
2021 ◽  
Author(s):  
Chiara Cavestro ◽  
Celeste Panteghini ◽  
Chiara Reale ◽  
Alessia Nasca ◽  
Silvia Fenu ◽  
...  

AbstractPLA2G6 is the causative gene for a group of autosomal recessive neurodegenerative disorders known as PLA2G6-associated neurodegeneration (PLAN). We present a case with early-onset parkinsonism, ataxia, cognitive decline, cerebellar atrophy, and brain iron accumulation. Sequencing of PLA2G6 coding regions identified only a heterozygous nonsense variant, but mRNA analysis revealed the presence of an aberrant transcript isoform due to a novel deep intronic variant (c.2035-274G > A) leading to activation of an intronic pseudo-exon. These results expand the genotypic spectrum of PLAN, showing the paramount importance of detecting possible pathogenic variants in deep intronic regions in undiagnosed patients.


2021 ◽  
Vol 22 (15) ◽  
pp. 8247
Author(s):  
Cheng-Tsung Hsiao ◽  
Thomas F. Tropea ◽  
Ssu-Ju Fu ◽  
Tanya M. Bardakjian ◽  
Pedro Gonzalez-Alegre ◽  
...  

Loss-of-function mutations in the KV4.3 channel-encoding KCND3 gene are linked to neurodegenerative cerebellar ataxia. Patients suffering from neurodegeneration associated with iron deposition may also present with cerebellar ataxia. The mechanism underlying brain iron accumulation remains unclear. Here, we aim to ascertain the potential pathogenic role of KCND3 variant in iron accumulation-related cerebellar ataxia. We presented a patient with slowly progressive cerebellar ataxia, parkinsonism, cognitive impairment, and iron accumulation in the basal ganglia and the cerebellum. Whole exome sequencing analyses identified in the patient a heterozygous KCND3 c.1256G>A (p.R419H) variant predicted to be disease-causing by multiple bioinformatic analyses. In vitro biochemical and immunofluorescence examinations revealed that, compared to the human KV4.3 wild-type channel, the p.R419H variant exhibited normal protein abundance and subcellular localization pattern. Electrophysiological investigation, however, demonstrated that the KV4.3 p.R419H variant was associated with a dominant increase in potassium current amplitudes, as well as notable changes in voltage-dependent gating properties leading to enhanced potassium window current. These observations indicate that, in direct contrast with the loss-of-function KCND3 mutations previously reported in cerebellar ataxia patients, we identified a rare gain-of-function KCND3 variant that may expand the clinical and molecular spectra of neurodegenerative cerebellar disorders associated with brain iron accumulation.


Sign in / Sign up

Export Citation Format

Share Document