Welfare Issues in Feedlot Cattle

2018 ◽  
pp. 211-234
Keyword(s):  
2002 ◽  
Vol 80 (9) ◽  
pp. 2373 ◽  
Author(s):  
T. L. Mader ◽  
S. M. Holt ◽  
G. L. Hahn ◽  
M. S. Davis ◽  
D. E. Spiers

2016 ◽  
Vol 94 (supplement5) ◽  
pp. 82
Author(s):  
A. K. Gulick ◽  
K. M. Freeman ◽  
B. C. Bernhard ◽  
J. O. Sarturi ◽  
J. M. Neary

2017 ◽  
Vol 95 (8) ◽  
pp. 3639
Author(s):  
C. J. Schneider ◽  
B. L. Nuttelman ◽  
A. L. Shreck ◽  
D. B. Burken ◽  
W. A. Griffin ◽  
...  
Keyword(s):  

1970 ◽  
Vol 13 (1) ◽  
pp. 0145-0147 ◽  
Author(s):  
S. R. Morrison ◽  
V. E. Mendel ◽  
T. E. Bond
Keyword(s):  

2010 ◽  
Vol 7 (7) ◽  
pp. 825-833 ◽  
Author(s):  
Alice L. Green ◽  
David A. Dargatz ◽  
Bruce A. Wagner ◽  
Paula J. Fedorka-Cray ◽  
Scott R. Ladely ◽  
...  

Author(s):  
B N Harsh ◽  
B J Klatt ◽  
M J Volk ◽  
A R Green-Miller ◽  
J C McCann

Abstract The objective was to quantify the effects of the beta-adrenergic agonist (β-AA) ractopamine hydrochloride (Actogain, Zoetis, Parsippany, NJ) on nitrogen excretion and nutrient digestibility in feedlot cattle. In experiment 1, twelve Simmental × Angus steers were blocked by bodyweight (531 ± 16 kg) and used in a randomized complete block design. Dietary treatments included: 1) a control without β-AA (CON) or 2) 400 mg/steer/d ractopamine hydrochloride (RAC) for 35 d before slaughter. Diets contained (DM basis) 55% dry rolled corn, 20% corn silage, 15% modified wet distillers grains with solubles, and 10% supplement. For each block, total collection of feed, orts, feces and urine were conducted for two 5 d sampling periods during week 2 and 4 of RAC supplementation. No interaction (P > 0.21) between treatment and collection period was observed for any parameter evaluated. Dietary treatment had no effect (P = 0.51) on DMI, but RAC had decreased fecal DM output (P = 0.04) compared with CON. Thus, RAC had greater apparent total tract DM digestibility (77.2 vs. 73.5%; P < 0.01), N digestibility (72.4 vs. 69.4%; P = 0.01), and NDF digestibility (65.6 vs. 60.2%; P < 0.01) than CON. Although treatment did not affect nitrogen intake (P = 0.52), RAC tended to reduce total nitrogen excretion (113.3 vs. 126.7 g/d; P = 0.10) compared with CON due to a tendency for decreased fecal nitrogen output (53.9 vs. 61.3 g/d; P = 0.10). However, dietary treatment had no effect (P = 0.53) on urinary nitrogen output or percentage of urinary nitrogen excreted as urea (P = 0.28). Experiment 2 was an in vitro experiment conducted to validate the effects of RAC on nutrient digestibility using Simmental × Angus heifers (451 ± 50 kg). Rumen fluid was collected individually by stomach tube from CON- (n = 9) and RAC-fed (n = 10) heifers to inoculate bottles containing a CON or RAC-containing substrate in a split-plot design. No interaction between rumen fluid source and in vitro substrate was observed. Greater IVDMD (P = 0.01) was observed in rumen fluid from RAC-fed heifers compared with rumen fluid from CON-fed heifers. Inclusion of RAC in the in vitro substrate increased IVDMD (P < 0.01). Overall, feeding RAC increased microbial digestion of the dry-rolled corn-based finishing diet to increase total tract dry mater digestion by 5% and reduce nitrogen excretion by 10.6% in the 35 d period prior to slaughter.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 160-160
Author(s):  
John Wagner ◽  
William T Nelson ◽  
Terry Engle ◽  
Jerry Spears ◽  
Jeff Heldt ◽  
...  

Abstract Four hundred and thirty-two beef steers (346.3 ± 63.7 kg BW) were used to determine the effects of Zn source on feedlot cattle fed ractopamine hydrochloride. Cattle were blocked in groups of 54 by BW and housed in 48 pens containing 9 steers per pen. Pens within a weight block were randomly assigned to treatments in a 2 x 3 factorial arrangement, with factors being: 1) 0 or 30.1 mg of ractopamine HCl/kg DM fed during the final 29 days on feed; and 2) Zn source: 90 mg of supplemental Zn/kg DM from ZnSO4; Zn sulfate (67%) + Zn methionine (33%); and Zn from Zn hydroxychloride, fed through the entire feeding period. Cattle were fed a high concentrate finishing diet for 154 d and slaughtered at a commercial abattoir. Average daily gain, DMI, feed efficiency and carcass characteristics were determined after slaughter. Zinc source had no impact on live animal performance. Cattle fed ractopamine HCl had greater (P < 0.01) final BW, greater (P < 0.001) ADG, improved (P < 0.001) G:F, heavier (P < 0.01) HCW, and larger (P < 0.05) longissimus muscle compared to non-ractopamine supplemented steers. There was a Zn source by ractopamine interaction (P < 0.01) for dressing percentage. Cattle receiving ractopamine HCl with Zn hydroxychloride had a greater dressing percentage (P < 0.05) when compared to ractopamine HCl cattle fed other Zn sources. Cattle receiving ractopamine HCl with Zn sulfate had a lesser dressing percentage (P < 0.05) when compared to ractopamine HCl cattle fed other Zn sources. Additional Zn source by ractopamine HCl interactions were not significant. These data indicate that Zn source has minimal impacts on feedlot steer performance and carcass characteristics when supplemented to cattle receiving 0.0 or 30.1 mg of ractopamine HCl/kg DM.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 193-193
Author(s):  
Eduardo Colombo ◽  
Reinaldo F Cooke ◽  
Alice Brandão ◽  
Jacob Wiegand ◽  
Kelsey Schubach ◽  
...  

Abstract This experiment evaluated the impacts of bovine appeasing substance (BAS) administration on performance, health, and physiological responses of feedlot cattle during a 45-d receiving period. A total of 342 recently-weaned Angus-influenced steers, originating from 16 cow-calf operations, were obtained from an auction yard on d -1 and road-transported (12 h) to the feedlot. Upon arrival on d 0, body weight (BW) was recorded and steers were ranked by BW and source and assigned to receive BAS (Nutricorp, Araras, SP, Brazil; n = 171) or placebo (diethylene glycol monoethyl ether; CON; n = 171). Treatments (5 mL) were topically applied to the nuchal skin area of each animal. Within treatment, calves were allocated to 1 of 24 drylot pens (12 pens/treatment) and received a free choice total-mixed ration from d 1 to 45. Calves were assessed for bovine respiratory disease (BRD) signs and feed intake was recorded from each pen daily. Steer BW was again recorded on d 1, 7, 17, 31, and 45, whereas blood samples were collected from 5 steers/pen concurrently with each BW assessment. Average daily gain was greater (P = 0.05) in BAS vs. CON calves, although final BW did not differ (P = 0.36) between treatments. No treatment effects were detected for feed intake (P = 0.95), resulting in greater (P = 0.05) feed efficiency in BAS vs. CON steers. No treatment effects were detected (P ≥ 0.37) for plasma concentrations of haptoglobin, whereas plasma cortisol concentrations were greater (P = 0.05) in CON vs. BAS steers on d 7 (treatment × day; P = 0.07). Incidence of BRD was greater (P ≤ 0.05) in BAS vs. CON on d 6 to 10 and d 18 to 21 (treatment × day; P < 0.01), although overall BRD incidence did not differ (P = 0.24) between treatments. The number of antimicrobial treatments required per steer diagnosed with BRD symptoms to recover from sickness was greater (P = 0.04) in CON vs. BAS calves. No treatment differences were detected (P ≥ 0.41) for mortality incidence, or proportion of steers removed from the experiment due to extreme sickness. Results from this experiment indicate BAS administration upon feedlot entry improved average daily gain by enhancing feed efficiency. Administration of BAS facilitated earlier detection of BRD and reduced the need for antimicrobial treatments. Collectively, these results suggest BAS administration as a promising strategy to benefit performance and immunocompetence of feedlot receiving cattle.


Sign in / Sign up

Export Citation Format

Share Document