Fish habitat restoration using large wood: Linking stream geomorphic change and fish response

2020 ◽  
pp. 1723-1729
Author(s):  
C. Segura ◽  
A. Yeager ◽  
C. Lorion
2005 ◽  
Vol 62 (12) ◽  
pp. 2716-2726 ◽  
Author(s):  
Michael J Bradford ◽  
Josh Korman ◽  
Paul S Higgins

There is considerable uncertainty about the effectiveness of fish habitat restoration programs, and reliable monitoring programs are needed to evaluate them. Statistical power analysis based on traditional hypothesis tests are usually used for monitoring program design, but here we argue that effect size estimates and their associated confidence intervals are more informative because results can be compared with both the null hypothesis of no effect and effect sizes of interest, such as restoration goals. We used a stochastic simulation model to compare alternative monitoring strategies for a habitat alteration that would change the productivity and capacity of a coho salmon (Oncorhynchus kisutch) producing stream. Estimates of the effect size using a freshwater stock–recruit model were more precise than those from monitoring the abundance of either spawners or smolts. Less than ideal monitoring programs can produce ambiguous results, which are cases in which the confidence interval includes both the null hypothesis and the effect size of interest. Our model is a useful planning tool because it allows the evaluation of the utility of different types of monitoring data, which should stimulate discussion on how the results will ultimately inform decision-making.


2019 ◽  
Author(s):  
Carlos M. Polivka

AbstractConceptual and methodological tools from behavioral ecology can inform studies of habitat quality and their potential for evaluating habitat restoration in conservation efforts is explored here. Such approaches provide mechanistic detail in understanding the relationship between organisms and their habitats and are thus more informative than correlations between density and habitat characteristics. Several Pacific salmon species have been the target of habitat restoration efforts for the past 2-3 decades, but most post-restoration effectiveness studies have been limited to correlative data described above. In mark-recapture assays from four different study years, the affinity of sub-yearling Chinook salmon (Oncorhynchus tschawytscha) and steelhead (O. mykiss) for stream pools restored with or created by engineered log structures was greater than that for pools without restoration, though with high interannual variability. From corresponding distribution and density data, it was clear that habitat affinity data are not always concordant with single observations of density. The same was true of the correlation between either affinity or density and physical characteristics of pools, although depth and current velocity had some explanatory power for both responses in Chinook. Movement into pools by Chinook during the assays indicated that restored pools can support more immigrants at a given density than can unrestored pools; however no such pattern emerged for steelhead. Variation among individuals in body condition has implications for population-wide fitness, and such low variation was correlated with stronger affinity for pools in Chinook regardless of restoration status. This suggests that pools may mediate habitat-related trade-offs and that restoring them might have a positive effect on fitness. Thus affinity, immigration, and condition data give much-needed mechanistic indication of habitat selection for restored habitat via an apparent capacity increase and those potential fitness benefits. This is stronger support for restoration effectiveness than density differences alone because density data 1) may simply indicate redistribution of fish from poor to good habitats and 2) are not adequate to show correlations between restoration and positive change in traits correlated with fitness.


2019 ◽  
Vol 76 (7) ◽  
pp. 1086-1095 ◽  
Author(s):  
Gus Wathen ◽  
Jacob E. Allgeier ◽  
Nicolaas Bouwes ◽  
Michael M. Pollock ◽  
Daniel E. Schindler ◽  
...  

Freshwater habitat restoration is a major conservation objective, motivating efforts to restore habitat complexity and quality for fishes. Restoration based on the engineering activities of beavers (Castor canadensis) increases fish habitat complexity, but how this affects fish habitat use and movement behaviours is not well known. We used a network of passive integrated transponder antennas to quantify small-scale movement and microhabitat use of 175 individual juvenile steelhead (Oncorhynchus mykiss) in a stream channel with a complex bathymetric profile resulting from a beaver impoundment and in a simplified channel devoid of beaver activity. Our results show that juvenile steelhead exploit microhabitat heterogeneity by employing a range of behaviours that maximizes available habitat via spatial and temporal partitioning among individuals. These results suggest spatial resource partitioning as a potential mechanism for the previously established positive correlations among steelhead density, survival, and production with beaver-based restoration within the study watershed. More broadly, our findings provide insight as to how populations can exploit habitat complexity through spatial partitioning that can be informative for planning restoration and management actions.


2003 ◽  
Vol 60 (1) ◽  
pp. 100-116 ◽  
Author(s):  
Charles K Minns ◽  
James E Moore

Canada's fish habitat management is guided by the principle of "no net loss of the productive capacity of fish habitat" (NNL). Many development proposals are assessed using habitat information alone, rather than fish data. Because fish–habitat linkages are often obscured by uncertainty, uncertainty must be factored into NNL assessments. Using a quantitative framework for assessing NNL and lake habitats as a context, the implications of uncertainty for decision making are examined. The overall behaviour of a net change equation given uncertainty is explored using Monte Carlo simulation. Case studies from Great Lakes development projects are examined using interval analysis. The results indicate that uncertainty, even when large, can be incorporated into assessments. This has important implications for the habitat management based on NNL. First, schemas to specify relative levels of uncertainty using simple habitat classifications can support robust decision making. Second, attaining NNL requires greater emphasis on minimizing habitat loss and creating new areas to compensate for losses elsewhere and less on detailing small incremental changes in modified habitats where the fish response is difficult to demonstrate. Third, the moderate to high levels of uncertainty in fish–habitat linkages require that created compensation is at least twice the losses to reasonably ensure NNL.


Sign in / Sign up

Export Citation Format

Share Document