Lagrangian statistics of bed-load particle transport from experiments with a long measurement domain

2020 ◽  
pp. 242-250
Author(s):  
F. Ballio ◽  
D. Claut ◽  
S.A. Hosseini Sadabadi ◽  
A. Marion ◽  
A. Radice ◽  
...  
2014 ◽  
Vol 744 ◽  
pp. 129-168 ◽  
Author(s):  
C. Ancey ◽  
J. Heyman

AbstractThis paper concerns a model of bed load transport, which describes the advection and dispersion of coarse particles carried by a turbulent water stream. The challenge is to develop a microstructural approach that, on the one hand, yields a parsimonious description of particle transport at the microscopic scale and, on the other hand, leads to averaged equations at the macroscopic scale that can be consistently interpreted in light of the continuum equations used in hydraulics. The cornerstone of the theory is the proper determination of the particle flux fluctuations. Apart from turbulence-induced noise, fluctuations in the particle transport rate are generated by particle exchanges with the bed consisting of particle entrainment and deposition. At the particle scale, the evolution of the number of moving particles can be described probabilistically using a coupled set of reaction–diffusion master equations. Theoretically, this is interesting but impractical, as solving the governing equations is fraught with difficulty. Using the Poisson representation, we show that these multivariate master equations can be converted into Fokker–Planck equations without any simplifying approximations. Thus, in the continuum limit, we end up with a Langevin-like stochastic partial differential equation that governs the time and space variations of the probability density function for the number of moving particles. For steady-state flow conditions and a fixed control volume, the probability distributions of the number of moving particles and the particle flux can be calculated analytically. Taking the average of the microscopic governing equations leads to an average mass conservation equation, which takes the form of the classic Exner equation under certain conditions carefully addressed in the paper. Analysis also highlights the specific part played by a process we refer to as collective entrainment, i.e. a nonlinear feedback process in particle entrainment. In the absence of collective entrainment the fluctuations in the number of moving particles are Poissonian, which implies that at the macroscopic scale they act as white noise that mediates bed evolution. In contrast, when collective entrainment occurs, large non-Poissonian fluctuations arise, with the important consequence that the evolution at the macroscopic scale may depart significantly that predicted by the averaged Exner equation. Comparison with experimental data gives satisfactory results for steady-state flows.


2021 ◽  
Vol 11 (16) ◽  
pp. 7306
Author(s):  
Zaid Alhusban ◽  
Manousos Valyrakis

Sediment transport at near threshold to low transport stages (below the continuous transport) can still be affected by flow turbulence and its dynamics can benefit from further comprehensive studies. This study uses an instrumented particle embedded with micro electromechanical sensors (MEMS) to allow tracking the motions and forces acting on it, leading to and during its transport. Instrumented particle transport experiments were carried out at laboratory flume under a range of flow conditions. The probability distributions functions (PDFs) of bed load particle instantaneous velocities, hop distances and associated travel times (measured from start to stop of transport) were obtained for all the performed experiments with varying flow rates and particle density. The modelled distributions are useful and enable a deeper understanding of bed load sediment transport dynamics from a Lagrangian perspective. Furthermore, the results analyzed from the instrumented particle (including the particle’s transport mode) were validated using visual particle tracking methods (top and side cameras). The findings of this study demonstrate that for the range of turbulent flows trialed herein, the instrumented particle can be a useful, accessible, and low-cost tool for obtaining particle transport dynamics, having demonstrated satisfactory potential for field deployment in the near future.


2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


Sign in / Sign up

Export Citation Format

Share Document