Physical modeling of landslides in ring shear tests and flume tests

Author(s):  
K Sassa ◽  
G Wang
2006 ◽  
Vol 46 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Sebastian Lobo-Guerrero ◽  
Luise Vallejo

Landslides ◽  
2009 ◽  
Vol 6 (3) ◽  
pp. 231-240 ◽  
Author(s):  
Daniela Boldini ◽  
Fawu Wang ◽  
Kyoji Sassa ◽  
Paolo Tommasi

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hung-Ming Lin ◽  
Jian-Hong Wu ◽  
Erik Sunarya

A new consolidated undrained ring shear test capable of measuring the pore pressures is presented to investigate the initiation mechanism of the Hsien-du-shan rock avalanche, triggered by Typhoon Morakot, in southern Taiwan. The postpeak state of the landslide surface between the Tangenshan sandstone and the remolded landslide gouge is discussed to address the unstable geomorphological precursors observed before the landslide occurred. Experimental results show that the internal friction angle of the high water content sliding surface in the total stress state, between 25.3 and 26.1°, clarifies the reason of the stable slope prior to Typhoon Morakot. In addition, during the ring shear tests, it is observed that the excess pore pressure is generated by the shear contractions of the sliding surface. The remolded landslide gouge, sheared under the high normal stress, rendered results associated with high shear strength, small shear contraction, low hydraulic conductivity, and continuous excess pore pressure. The excess pore pressure feedback at the sliding surface may have accelerated the landslide.


2005 ◽  
Vol 42 (1) ◽  
pp. 229-251 ◽  
Author(s):  
Aurelian Catalin Trandafir ◽  
Kyoji Sassa

This paper is concerned with an analysis of the seismic performance of infinite slopes in undrained conditions. The material assumed on the sliding surface is a loose saturated sand susceptible to a gradual loss in undrained shear strength after failure with the progress of unidirectional shear displacement. The undrained monotonic and cyclic shear behavior of this sand was investigated through an experimental study based on ring shear tests, with initial stresses corresponding to the static conditions on the sliding surface of the analyzed slopes. These tests provide the experimental framework for a modified sliding block method to estimate the earthquake-induced undrained shear displacements for conditions of no shear stress reversals on the sliding surface. The proposed estimation procedure incorporates the shearing resistance obtained from undrained monotonic ring shear tests to approximate the undrained yield resistance at a certain displacement during an earthquake. The term catastrophic failure is used in this study to define the accelerated motion of a potential sliding soil mass due to the static driving shear stress exceeding the reduced undrained yield resistance of the soil on the shear surface. The critical displacement necessary to trigger a catastrophic failure on the shear surface under seismic conditions was derived based on the shear resistance – shear displacement curve obtained under monotonic loading conditions. Using the shear resistance – shear displacement data from undrained monotonic ring shear tests and several processed horizontal earthquake accelerograms, the minimum peak earthquake acceleration necessary to cause a catastrophic shear failure under various seismic waveforms was estimated for conditions of no shear stress reversals on the sliding surface.Key words: earthquakes, slopes, critical shear displacement, sand, ring shear tests, undrained shear strength.


2015 ◽  
Vol 12 (6) ◽  
pp. 1534-1541 ◽  
Author(s):  
Ming-jian Hu ◽  
Hua-li Pan ◽  
Chang-qi Zhu ◽  
Fa-wu Wang

Sign in / Sign up

Export Citation Format

Share Document