scholarly journals Preparation and Characterization of Highly Porous Direct Compression Carrier Particles with Improved Drug Loading During an Interactive Mixing Process

2010 ◽  
Vol 11 (2) ◽  
pp. 698-707 ◽  
Author(s):  
Mingna Song ◽  
Ning Li ◽  
Louwrens R. Tiedt ◽  
Michael D. Degennaro ◽  
Melgardt M. de Villiers
2011 ◽  
Vol 207 (1-3) ◽  
pp. 279-289 ◽  
Author(s):  
Tobias D. Elmøe ◽  
Antonio Tricoli ◽  
Jan-Dierk Grunwaldt
Keyword(s):  

2019 ◽  
Vol 32 (1) ◽  
pp. 1-6
Author(s):  
Nikita Verma

As a disease skin cancer has obtained different characteristics over the decades. Solar radiation that contains ultraviolet ray is the prime cause of skin cancer. In this present research, the nano-precipitation method was applied for preparing Quercetin loaded Nanoparticle (Qu-Nps) with much enhanced loading properties and improves incorporation of corresponding drugs. At the same time, the Quadratic model that takes help of the Response Surface Method was applied to observe the effects of some specific parameters maintained in the development of nanoparticle. Here, the sonication time was 20 min and delivery system F6 (with Drug: Polymer ratio of 1:45) provided optimum drug entrapment ability which is 70%. The optimized formulation for average size was almost 102.39 ±7.64 nm with zeta potential diameter averaging -28.43mV. Quercetin is a dietary flavonoid possessing multidimensional properties that is used in various other diseases including viral infection, bacterial infection, diabetes mellitus, and cancer. All outcomes support the view that Quercetin loaded nanoparticles (Qu-Nps) has high entrapment and drug loading abilities.


2012 ◽  
Vol 13 (2) ◽  
pp. 601-604
Author(s):  
Ingunn Tho ◽  
Katharina Picker-Freyer ◽  
Linda Salbu ◽  
Annette Bauer-Brandl

2017 ◽  
Vol 131 (3) ◽  
pp. 2205-2212 ◽  
Author(s):  
Carlos Roberto Ferreira Junior ◽  
Fabrício Nunes Tanaka ◽  
Adriel Bortolin ◽  
Márcia Regina de Moura ◽  
Fauze Ahmad Aouada

1986 ◽  
pp. 397-407
Author(s):  
Fabio Carli ◽  
Italo Colombo ◽  
Mara Lovrecich ◽  
Fulvio Rubessa ◽  
Clara Torricelli

NANO ◽  
2013 ◽  
Vol 08 (04) ◽  
pp. 1350042 ◽  
Author(s):  
JING WANG ◽  
LI GUO ◽  
LI FANG MA

In this paper, we firstly synthesized glycyrrhetinic acid-modified double amino-terminated poloxamer 188 (GA–NH–POLO–NH–GA). The structure of the synthesized compound was confirmed by 1H-NMR and Fourier transform infrared (FT-IR) spectroscopy. Then the nanoparticles composed of GA–NH–POLO–NH–GA/chitosan (GA–NH–POLO–NH–GA/CTS) were prepared by an ionic gelation process. The characterization of the nanoparticles was measured by dynamic light scattering (DLS) and scanning electron microscope (SEM). The results showed that the nanoparticles were well dispersed with a spherical shape and the particle size was distributed between 100 nm and 300 nm. The cytotoxicity based on MTT assay against cells (QGY-7703 cells and L929 cells) showed that the nanoparticles had low toxicity and good biocompatibility. The encapsulation efficiency and drug loading of 5-fluorouracil-loaded nanoparticles (5-FU nanoparticles) were measured by high-performance liquid chromatography (HPLC) and fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorbance. The encapsulation of 5-Fu-loaded CTS nanoparticles was 12.8% and the drug loading was 2.9%, while the encapsulation of 5-Fu-loaded GA–NH–POLO–NH–GA/CTS nanoparticles was 20.9% and the drug loading was 3.36%. The release profile showed that the GA–NH–POLO–NH–GA/CTS nanoparticles were available for sustained release of 5-Fu. The GA–NH–POLO–NH–GA/CTS nanoparticles have a higher affinity to the QGY-7703 cells, so indicated that the GA–NH–POLO–NH–GA/CTS nanoparticles have the capacity of liver-targeting in vitro.


2018 ◽  
Author(s):  
Yeon-Bin Choi ◽  
Jeong-Hun Son ◽  
Dong Gyu Lee ◽  
Dong-Sik Bae

Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 537 ◽  
Author(s):  
Joachim Delasoie ◽  
Fabio Zobi

Unicellular diatom microalgae are a promising natural resource of porous biosilica. These microorganisms produce around their membrane a highly porous and extremely structured silica shell called frustule. Once harvested from living algae or from fossil sediments of diatomaceous earth, this biocompatible and non-toxic material offers an exceptional potential in the field of micro/nano-devices, drug delivery, theranostics, and other medical applications. The present review focused on the use of diatoms in the field of drug delivery systems, with the aim of presenting the different strategies implemented to improve the biophysical properties of this biosilica in terms of drug loading and release efficiency, targeted delivery, or site-specific binding capacity by surface functionalization. The development of composite materials involving diatoms for drug delivery applications is also described.


RSC Advances ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 7163-7169
Author(s):  
Xin Li ◽  
Danlin Zeng ◽  
Ping Ke ◽  
Guanghui Wang ◽  
Dengke Zhang

A novel magnetic microsphere was prepared by the simple microemulsion polymerization for protein drug delivery systems. This magnetic microsphere exhibited good magnetism and superior drug loading capacity and evident sustained-release performance.


Sign in / Sign up

Export Citation Format

Share Document