dietary flavonoid
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 57)

H-INDEX

53
(FIVE YEARS 6)

2021 ◽  
pp. 1-15
Author(s):  
Pedro A. Romero-Juárez ◽  
Diego Bulcão Visco ◽  
Raul Manhães-de-Castro ◽  
Mercedes V. Urquiza-Martínez ◽  
Luis Miguel Saavedra ◽  
...  

Neurology ◽  
2021 ◽  
Vol 97 (23) ◽  
pp. 1095-1095
Author(s):  
Tian-Shin Yeh ◽  
Changzheng Yuan ◽  
Alberto Ascherio ◽  
Bernard A. Rosner ◽  
Walter C. Willett ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12209
Author(s):  
Bingyuan Wang ◽  
Mingrui Zhang ◽  
Jiankang Guo ◽  
Zhiguo Liu ◽  
Rong Zhou ◽  
...  

Apigenin, a common dietary flavonoid abundantly present in a variety of fruits and vegetables, has promising anticancer properties. As an effector of apigenin in myoblasts, protein arginine methyltransferase 7 (Prmt7) is required for male germ cell development. However, whether apigenin may influence male reproductive health through Prmt7 is still unclear. To this end, mouse spermatogonia were treated with different concentrations (2.5 to 50 μM) of apigenin for 48 h, which showed that apigenin could cause reduced cell proliferation in conjunction with longer S phase and G2/M phase (with concentrations of 10 and 20 μM, respectively), and increased apoptosis of spermatogonia (with concentration of 20 μM). Reduced Prmt7 expression was found in 20 μM apigenin-treated spermatogonia. Moreover, siRNA-induced Prmt7 knockdown exhibited similar influence on spermatogonia as that of apigenin treatment. In mechanistic terms, transcriptome analysis revealed 287 differentially expressed genes between Prmt7-downregulated and control spermatogonia. Furthermore, rescue experiments suggested that the effects of apigenin on spermatogonia might be mediated through the Prmt7/Akt3 pathway. Overall, our study supports that apigenin can interfere with mouse spermatogonial proliferation by way of the downregulated Prmt7/Akt3 pathway, which demonstrates that the concentration should be taken into account in future applications of apigenin for cancer therapy of men.


2021 ◽  
pp. 745-754
Author(s):  
A KOLESAROVA ◽  
K MICHALCOVA ◽  
S ROYCHOUDHURY ◽  
S BALDOVSKA ◽  
E TVRDA ◽  
...  

This study aimed to examine the effect of dietary flavonoid isoquercitrin on ovarian granulosa cells using the immortalized human cell line HGL5. Cell viability, survival, apoptosis, release of steroid hormones 17β-estradiol and progesterone, and human transforming growth factor-β2 (TGF-β2) and TGF-β2 receptor as well as intracellular reactive oxygen species (ROS) generation were investigated after isoquercitrin treatment at the concentration range of 5-100 μg.ml-1. It did not cause any significant change (p>0.05) in cell viability as studied by AlamarBlue assay in comparison to control. No significant change was observed (p>0.05) in the proportion of live, dead and apoptotic cells as revealed by apoptotic assay using flow cytometry. Similarly, the release of 17β-estradiol, progesterone, TGF-β2 and its receptor were not affected significantly (p>0.05) by isoquercitrin as detected by ELISA, in comparison to control. Except for the highest concentration of 100 μg.ml-1, which led to oxidative stress, isoquercitrin exhibited antioxidative activity at lower concentration used in the study (5, 10, 25, and 50 μg.ml-1) by hampering the production of intracellular ROS, in comparison to control, as detected by chemiluminescence assay (p<0.05). Findings of the present study indicate an existence of the antioxidative pathway that involves inhibition of intracellular ROS generation by isoquercitrin in human ovarian granulosa cells.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1304
Author(s):  
Vedanjali Gogineni ◽  
Manal A. Nael ◽  
Narayan D. Chaurasiya ◽  
Khaled M. Elokely ◽  
Christopher R. McCurdy ◽  
...  

A series of dietary flavonoid acacetin 7-O-methyl ether derivatives were computationally designed aiming to improve the selectivity and potency profiles against monoamine oxidase (MAO) B. The designed compounds were evaluated for their potential to inhibit human MAO-A and -B. Compounds 1c, 2c, 3c, and 4c were the most potent with a Ki of 37 to 68 nM against MAO-B. Compounds 1c–4c displayed more than a thousand-fold selectivity index towards MAO-B compared with MAO-A. Moreover, compounds 1c and 2c showed reversible inhibition of MAO-B. These results provide a basis for further studies on the potential application of these modified flavonoids for the treatment of Parkinson’s Disease and other neurological disorders.


Sign in / Sign up

Export Citation Format

Share Document