Erratum: Extended self-similarity of atmospheric boundary layer wind fields in mesoscale regime: Is it real?

2016 ◽  
Vol 114 (2) ◽  
pp. 29901
Author(s):  
V. P. Kiliyanpilakkil ◽  
S. Basu
2020 ◽  
Author(s):  
Olga Ermakova ◽  
Nikita Rusakov ◽  
Evgeny Poplavsky ◽  
Yuliya Troitskaya ◽  
Daniil Sergeev ◽  
...  

<p>Insufficient knowledge of the atmosphere layer momentum, heat and moisture transfer between the wavy water surface and marine atmospheric boundary layer under hurricane conditions lead to the uncertainties while using weather forecasting models and models of climate. In particular, there is a significant lack of data for heat and moisture exchange coefficients. In this regard, it is necessary to analyze and process the vertical profiles of wind speed and thermodynamic quantities. The present study is concerned with the analysis and processing of measurements from the NOAA falling GPS-sondes for hurricanes of categories 4 and 5 of 2003-2017, which represent an array of data on wind speed, temperature, altitude, coordinates, etc.</p><p>The proposed approach for describing a turbulent boundary layer formed in hurricane conditions is based on the use of the self-similarity properties of the velocity and enthalpy profiles in the atmospheric boundary layer, which includes a layer of constant flows, transferring into its “wake” part with height. Based on the proposed approach, the aerodynamic drag coefficients Cd and the enthalpy exchange coefficient Ck for a selected group of hurricanes were restored. As the value of Ck/Cd represents a determining factor in the formation of a hurricane, the dependence of this ratio on the wind speed was constructed.</p><p>This work was supported by the RFBR projects No 19-05-00249, 19-05-00366, 18-35-20068 (remote sensing data analysis) and RSF No 19-17-00209 (GPS-sonde data assimilation and processing).</p>


2021 ◽  
Author(s):  
Evgeny Poplavsky ◽  
Nikita Rusakov ◽  
Olga Ermakova ◽  
Daniil Sergeev ◽  
Yuliya Troitskaya ◽  
...  

<p>The work is concerned with the development of a method for the retrieval of tropical cyclones boundary atmospheric layer parameters, namely the wind friction velocity and wind speed at meteorological height. For the analysis, we used the results of field measurements of wind speed profiles from dropwindsondes launched from National Oceanic and Atmospheric Administration (NOAA) aircraft and collocated data from the Stepped-Frequency Microwave Radiometer (SFMR) located onboard of the same aircraft.</p><p>The results of radiometric measurements were used to obtain the emissivity values, which were compared with the field data obtained from the falling dropwindsondes. Using the algorithm taking into account the self-similarity of the velocity defect profile (Ermakova et al., 2019), the parameters of the atmospheric boundary layer were determined from the data measured by dropwindsondes. This algorithm gives an opportunity to obtain the wind speed value at meteorological height and wind friction velocity from the averaged data in the wake part of the profiles of the marine atmospheric boundary layer.</p><p>A comparison of the wind speed U10 dependencies, retrieved from the SFMR data and measurements from dropwindsondes, with the similar dependencies obtained in (Uhlhorn et al., 2007), was made, and their satisfactory agreement was demonstrated. This work was supported by the RFBR projects No. 19-05-00249, 19-05-00366.</p>


2015 ◽  
Vol 92 (3) ◽  
Author(s):  
V. P. Kiliyanpilakkil ◽  
S. Basu ◽  
A. Ruiz-Columbié ◽  
G. Araya ◽  
L. Castillo ◽  
...  

1997 ◽  
Vol 55 (6) ◽  
pp. 6985-6988 ◽  
Author(s):  
G. Amati ◽  
R. Benzi ◽  
S. Succi

2007 ◽  
Vol 25 ◽  
pp. 49-55 ◽  
Author(s):  
S. Argentini ◽  
I. Pietroni ◽  
G. Mastrantonio ◽  
A. Viola ◽  
S. Zilitinchevich

Sign in / Sign up

Export Citation Format

Share Document