scholarly journals Effect of vortices on the spin-flip lifetime of atoms in superconducting atom-chips

2009 ◽  
Vol 87 (1) ◽  
pp. 13002 ◽  
Author(s):  
G. Nogues ◽  
C. Roux ◽  
T. Nirrengarten ◽  
A. Lupaşcu ◽  
A. Emmert ◽  
...  
Keyword(s):  
2007 ◽  
Vol 76 (3) ◽  
Author(s):  
Ulrich Hohenester ◽  
Asier Eiguren ◽  
Stefan Scheel ◽  
E. A. Hinds

2018 ◽  
Author(s):  
Shannon Houck ◽  
Nicholas Mayhall

<div>Many multiconfigurational systems, such as single-molecule magnets, are difficult to study using traditional computational methods due to the simultaneous existence of both spin and spatial degeneracies. In this work, a new approach termed n-spin-flip Ionization Potential/Electron Affinity (<i>n</i>SF-IP or <i>n</i>SF-EA) is introduced which combines the spin-flip method of Anna Krylov with particle-number changing IP/EA methods. We demonstrate the efficacy of the approach by applying it to the strongly-correlated N<sub>2</sub><sup>+</sup> as well as several double exchange systems. We also demonstrate that when these systems are well-described by a double exchange model Hamiltonian, only 1SF-IP/EA is required to extract the double exchange parameters and accurately predict energies for the low-spin states. This significantly reduces the computational effort for studying such systems. The effects of including additional excitations (using a RAS-<i>n</i>SF-IP/EA scheme) are also examined, with particular emphasis on hole and particle excitations.</div>


2018 ◽  
Author(s):  
Shannon Houck ◽  
Nicholas Mayhall

<div>Many multiconfigurational systems, such as single-molecule magnets, are difficult to study using traditional computational methods due to the simultaneous existence of both spin and spatial degeneracies. In this work, a new approach termed n-spin-flip Ionization Potential/Electron Affinity (<i>n</i>SF-IP or <i>n</i>SF-EA) is introduced which combines the spin-flip method of Anna Krylov with particle-number changing IP/EA methods. We demonstrate the efficacy of the approach by applying it to the strongly-correlated N<sub>2</sub><sup>+</sup> as well as several double exchange systems. We also demonstrate that when these systems are well-described by a double exchange model Hamiltonian, only 1SF-IP/EA is required to extract the double exchange parameters and accurately predict energies for the low-spin states. This significantly reduces the computational effort for studying such systems. The effects of including additional excitations (using a RAS-<i>n</i>SF-IP/EA scheme) are also examined, with particular emphasis on hole and particle excitations.</div>


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Sadashige Matsuo ◽  
Kazuyuki Kuroyama ◽  
Shunsuke Yabunaka ◽  
Sascha R. Valentin ◽  
Arne Ludwig ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Régis Decker ◽  
Artur Born ◽  
Robby Büchner ◽  
Kari Ruotsalainen ◽  
Christian Stråhlman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document