scholarly journals Minireview: Finding the Sweet Spot: Peripheral Versus Central Glucagon-Like Peptide 1 Action in Feeding and Glucose Homeostasis

Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 2997-3001 ◽  
Author(s):  
Diana L. Williams

Glucagon-like peptide 1 (GLP-1) is both a gut-derived hormone and a neurotransmitter synthesized in the brain. Early reports suggested that GLP-1 acts in the periphery to promote insulin secretion and affect glucose homeostasis, whereas central GLP-1 reduces food intake and body weight. However, current research indicates that in fact, GLP-1 in each location plays a role in these functions. This review summarizes the evidence for involvement of peripheral and brain GLP-1 in food intake regulation and glucose homeostasis and proposes a model for the coordinated actions of GLP-1 at multiple sites.

2016 ◽  
Vol 230 (2) ◽  
pp. R51-R58 ◽  
Author(s):  
Jaroslav Kuneš ◽  
Veronika Pražienková ◽  
Andrea Popelová ◽  
Barbora Mikulášková ◽  
Jana Zemenová ◽  
...  

Obesity is an escalating epidemic, but an effective noninvasive therapy is still scarce. For obesity treatment, anorexigenic neuropeptides are promising tools, but their delivery from the periphery to the brain is complicated because peptides have a low stability and limited ability to cross the blood–brain barrier. In this review, we summarize results of several studies with our newly designed lipidized analogs of prolactin-releasing peptide (PrRP). PrRP is involved in feeding and energy balance regulation as demonstrated by obesity phenotypes of both PrRP- and PrRP-receptor-knockout mice. Lipidized PrRP analogs showed binding affinity and signaling in PrRP receptor-expressing cells similar to natural PrRP. Moreover, these analogs showed high binding affinity also to anorexigenic neuropeptide FF (NPFF)-2 receptor. Acute peripheral administration of myristoylated and palmitoylated PrRP analogs to mice and rats induced strong and long-lasting anorexigenic effects and neuronal activation in the brain areas involved in food intake regulation. Two-week-long subcutaneous administration of palmitoylated PrRP31 and myristoylated PrRP20 lowered food intake, body weight, improved metabolic parameters and attenuated lipogenesis in mice with diet-induced obesity. A strong anorexigenic, body weight-reducing and glucose tolerance-improving effect of palmitoylated-PrRP31 was shown also in diet-induced obese rats after its repeated 2-week-long peripheral administration. Thus, the strong anorexigenic and body weight-reducing effects of palmitoylated PrRP31 and myristoylated PrRP20 make these analogs attractive candidates for antiobesity treatment. Moreover, PrRP receptor might be a new target for obesity therapy.


2021 ◽  
pp. 1-48
Author(s):  
Alba Miguéns-Gómez ◽  
Àngela Casanova-Martí ◽  
M Teresa Blay ◽  
Ximena Terra ◽  
Raúl Beltrán-Debón ◽  
...  

ABSTRACT Glucagon-like peptide 1 (GLP-1) is an enterohormone with a key role in several processes controlling body homeostasis, including glucose homeostasis and food intake regulation. It is secreted by the intestinal cells in response to nutrients, such as glucose, fat and amino acids. In this review, we analyse the effect of protein on GLP-1 secretion and clearance. We review the literature on the GLP-1 secretory effects of protein and protein hydrolysates, and the mechanisms through which they exert these effects. We also review the studies on protein from different sources that has inhibitory effects on DPP4, the enzyme responsible for GLP-1 inactivation, with particular emphasis on specific sources and treatments, and the gaps there still are in knowledge. There is evidence that the protein source and the hydrolytic processing applied to them can influence the effects on GLP-1 signalling. The gastrointestinal digestion of proteins, for example, significantly changes their effectiveness at modulating this enterohormone secretion in both in vivo and in vitro studies. Nevertheless, little information is available regarding human studies and more research is required to understand their potential as regulators of glucose homeostasis.


2019 ◽  
Vol 62 (3) ◽  
pp. 101-116
Author(s):  
Cristina Velasco ◽  
Sara Comesaña ◽  
Marta Conde-Sieira ◽  
Jesús M Míguez ◽  
José L Soengas

We hypothesize that cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) are involved in the modulation of metabolic regulation of food intake by fatty acids in fish. Therefore, we assessed in rainbow trout (Oncorhynchus mykiss) the effects of intracerebroventricular treatment with 1 ng/g of CCK-8 and with 2 ng/g of GLP-1 on food intake, expression of neuropeptides involved in food intake control and the activity of fatty acid-sensing systems in hypothalamus and hindbrain. Food intake decreased up to 24 h post-treatment to 49.8–72.3% and 3.1–17.8% for CCK-8 and GLP-1, respectively. These anorectic responses are associated with changes in fatty acid metabolism and an activation of fatty acid-sensing mechanisms in the hypothalamus and hindbrain. These changes occurred in parallel with those in the expression of anorexigenic and orexigenic peptides. Moreover, we observed that the activation of fatty acid sensing and the enhanced anorectic potential elicited by CCK-8 and GLP-1 treatments occurred in parallel with the activation of mTOR and FoxO1 and the inhibition of AMPKα, BSX and CREB. The results are discussed in the context of metabolic regulation of food intake in fish.


2018 ◽  
Vol 107 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Yuko Maejima ◽  
Shoko Yokota ◽  
Katsuhiko Nishimori ◽  
Kenju Shimomura

Oxytocin was discovered in 1906 as a peptide that promotes delivery and milk ejection; however, its additional physiological functions were determined 100 years later. Many recent articles have reported newly discovered effects of oxytocin on social communication, bonding, reward-related behavior, adipose tissue, and muscle and food intake regulation. Because oxytocin neurons project to various regions in the brain that contribute to both feeding reward (hedonic feeding) and the regulation of energy balance (homeostatic feeding), the mechanisms of oxytocin on food intake regulation are complicated and largely unknown. Oxytocin neurons in the paraventricular nucleus (PVN) receive neural projections from the arcuate nucleus (ARC), which is an important center for feeding regulation. On the other hand, these neurons in the PVN and supraoptic nucleus project to the ARC. PVN oxytocin neurons also project to the brain stem and the reward-related limbic system. In addition to this, oxytocin induces lipolysis and decreases fat mass. However, these effects in feeding and adipose tissue are known to be dependent on body weight (BW). Oxytocin treatment is more effective in food intake regulation and fat mass decline for individuals with leptin resistance and higher BW, but is known to be less effective in individuals with normal BW. In this review, we present in detail the recent findings on the physiological role of oxytocin in feeding regulation and the anorexigenic neural pathway of oxytocin neurons, as well as the advantage of oxytocin usage for anti-obesity treatment.


Author(s):  
David J. Nutt ◽  
Liam J. Nestor

Many of the same behavioural and brain disturbances observed in addiction are also seen in obesity and binge-eating disorder. This suggests that there are shared neural substrates between substance addiction and compulsive food consumption. Food intake and appetite are regulated by numerous appetite hormones that exert their effects through brain systems involved in reward sensitivity, stress, impulsivity, and compulsivity. There is now emerging evidence that appetite hormones (e.g. ghrelin, glucagon-like peptide-1, orexin) can modulate addictive behaviours (e.g. craving) and the intake of alcohol and drugs. Therefore, there is an emerging shift into a new field of testing drugs that affect appetite hormones and their receptors in the brain, and their use in regulating the brain mechanisms that lead to relapse in addiction disorders.


2002 ◽  
Vol 440 (2-3) ◽  
pp. 269-279 ◽  
Author(s):  
Juris J. Meier ◽  
Baptist Gallwitz ◽  
Wolfgang E. Schmidt ◽  
Michael A. Nauck

Endocrinology ◽  
1999 ◽  
Vol 140 (1) ◽  
pp. 244-250 ◽  
Author(s):  
Karim Meeran ◽  
Donal O’Shea ◽  
C. Mark B. Edwards ◽  
Mandy D. Turton ◽  
Melanie M. Heath ◽  
...  

Abstract Central nervous system glucagon-like peptide-1-(7–36) amide (GLP-1) administration has been reported to acutely reduce food intake in the rat. We here report that repeated intracerebroventricular (icv) injection of GLP-1 or the GLP-1 receptor antagonist, exendin-(9–39), affects food intake and body weight. Daily icv injection of 3 nmol GLP-1 to schedule-fed rats for 6 days caused a reduction in food intake and a decrease in body weight of 16 ± 5 g (P < 0.02 compared with saline-injected controls). Daily icv administration of 30 nmol exendin-(9–39) to schedule-fed rats for 3 days caused an increase in food intake and increased body weight by 7 ± 2 g (P < 0.02 compared with saline-injected controls). Twice daily icv injections of 30 nmol exendin-(9–39) with 2.4 nmol neuropeptide Y to ad libitum-fed rats for 8 days increased food intake and increased body weight by 28 ± 4 g compared with 14 ± 3 g in neuropeptide Y-injected controls (P < 0.02). There was no evidence of tachyphylaxis in response to icv GLP-1 or exendin-(9–39). GLP-1 may thus be involved in the regulation of body weight in the rat.


Sign in / Sign up

Export Citation Format

Share Document