A Simple and Sensitive Microtiter Plate Estrogen Bioassay Based on Stimulation of Alkaline Phosphatase in Ishikawa Cells: Estrogenic Action of Δ5Adrenal Steroids*

Endocrinology ◽  
1990 ◽  
Vol 127 (6) ◽  
pp. 2757-2762 ◽  
Author(s):  
BRUCE A. LITTLEFIELD ◽  
ERLIO GURPIDE ◽  
LESZEK MARKIEWICZ ◽  
BRENDA McKINLEY ◽  
RICHARD B. HOCHBERG
1998 ◽  
Vol 274 (3) ◽  
pp. C724-C733 ◽  
Author(s):  
Graciela Berberián ◽  
Cecilia Hidalgo ◽  
Reinaldo Dipolo ◽  
Luis Beaugé

In cardiac sarcolemmal vesicles, MgATP stimulates Na+/Ca2+exchange with the following characteristics: 1) increases 10-fold the apparent affinity for cytosolic Ca2+; 2) a Michaelis constant for ATP of ∼500 μM; 3) requires micromolar vanadate while millimolar concentrations are inhibitory; 4) not observed in the presence of 20 μM eosin alone but reinstated when vanadate is added; 5) mimicked by adenosine 5′- O-(3-thiotriphosphate), without the need for vanadate, but not by β,γ-methyleneadenosine 5′-triphosphate; and 6) not affected by unspecific protein alkaline phosphatase but abolished by a phosphatidylinositol-specific phospholipase C (PI-PLC). The PI-PLC effect is counteracted by phosphatidylinositol. In addition, in the absence of ATP,l-α-phosphatidylinositol 4,5-bisphosphate (PIP2) was able to stimulate the exchanger activity in vesicles pretreated with PI-PLC. This MgATP stimulation is not related to phosphorylation of the carrier, whereas phosphorylation appeared in the phosphoinositides, mainly PIP2, that coimmunoprecipitate with the exchanger. Vesicles incubated with MgATP and no Ca2+ show a marked synthesis ofl-α-phosphatidylinositol 4-monophosphate (PIP) with little production of PIP2; in the presence of 1 μM Ca2+, the net synthesis of PIP is smaller, whereas that of PIP2increases ninefold. These results indicate that PIP2 is involved in the MgATP stimulation of the cardiac Na+/Ca2+exchanger through a fast phosphorylation chain: a Ca2+-independent PIP formation followed by a Ca2+-dependent synthesis of PIP2.


1986 ◽  
Vol 111 (2) ◽  
pp. 285-288 ◽  
Author(s):  
Masayoshi Yamaguchi ◽  
Teruyuki Sakashita

Abstract. The interaction of vitamin D3 and zinc on bone metabolism was investigated in the femur of weanling rats. Oral administration of vitamin D3 (1.0 μg/100 g body weight) did not cause any increase in the zinc accumulation in the femoral tissue following treatment with zinc sulphate (1.0 mg Zn/100 g). Administration of vitamin D3 or zinc produced significant increases the alkaline phosphatase activity and DNA content of the femoral diaphvsis but not of the epiphysis. The increase in alkaline phosphatase activity was enhanced additionally by simultaneous administration of vitamin D3 and zinc. Moreover, the increase in DNA content was enhanced markedly (about 4 times) by these treatments. At a dose of 0.5 μg of vitamin D3 per 100 g, DNA content was at the control level. This level was increased about 2 times by simultaneous administration of zinc (1.0 mg/100 g). The increase in alkaline phosphatase activity following simultaneous administration of vitamin D3 and zinc was significantly inhibited by treatment with cycloheximide, actinomycin D, or mitomycin C. Also, the increase in DNA content was completely inhibited by mitomycin C treatment. The present data suggest that the combination of vitamin D3 and zinc has a multiple effect on the stimulation of bone growth and mineralization in weanling rats, and that this effect is based on a stimulation of the DNA synthesis in bone cells.


1968 ◽  
Vol 39 (3) ◽  
pp. 676-697 ◽  
Author(s):  
Gilbert Vaes

Bone resorption, characterized by the solubilization of both the mineral and the organic components of the osseous matrix, was obtained in tissue culture under the action of parathyroid hormone (PTH). It was accompanied by the excretion of six lysosomal acid hydrolases, which was in good correlation with the progress of the resorption evaluated by the release of phosphate, calcium 45 or hydroxyproline from the explants; there was no increased excretion of two nonlysosomal enzymes, alkaline phosphatase, and catalase. Balance studies and experiments with inhibitors of protein synthesis indicated that the intracellular stores of the acid hydrolases excreted were maintained by new synthesis. The release was not due to a direct disruption of the lysosomal membrane by PTH; it is presumed to result from an exocytosis of the whole lysosomal content and to involve mechanisms similar to those controlling the secretion of this content into digestive vacuoles. The resorbing explants acidified their culture fluids at a faster rate and released more lactate and citrate than the controls; this release was in good correlation, in the PTH-treated cultures, with the resorption of the bone mineral, but the amount of citrate released was considerably smaller than that of lactate. The acid released could account for the resorption of the mineral. It is proposed, as a working hypothesis, that the acid hydrolases of the lysosomes are active in the resorption of the organic matrix of bone and that acid, originating possibly from the stimulation of glycolysis, cares for the concomitant solubilization of bone mineral while also favoring the hydrolytic action of the lysosomal enzymes.


Sign in / Sign up

Export Citation Format

Share Document