Long term in vitro effects of streptozotocin, interleukin-1, and high glucose concentration on the activity of mitochondrial dehydrogenases and the secretion of insulin in pancreatic islets.

Endocrinology ◽  
1992 ◽  
Vol 130 (6) ◽  
pp. 3522-3528 ◽  
Author(s):  
J Rasschaert ◽  
D L Eizirik ◽  
W J Malaisse
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Gericke ◽  
K. Suminska-Jasińska ◽  
A. Bręborowicz

AbstractChronic exposure of retinal endothelium cells to hyperglycemia is the leading cause of diabetic retinopathy. We evaluated the effect of high glucose concentration on senescence in human retinal endothelial cells (HREC) and modulation of that effect by Sulodexide. Experiments were performed on HREC undergoing in vitro replicative senescence in standard medium or medium supplemented with glucose 20 mmol/L (GLU) or mannitol 20 mnol/L (MAN). Effect of Sulodexide 0.5 LRU/mL (SUL) on the process of HREC senescence was studied. Glucose 20 mmol/L accelerates senescence of HREC: population doubling time (+ 58%, p < 0.001) β-galactosidase activity (+ 60%, p < 0.002) intracellular oxidative stress (+ 65%, p < 0.01), expression of p53 gene (+ 118%, p < 0.001). Senescent HREC had also reduced transendothelial electrical resistance (TEER) (− 30%, p < 0.001). Mannitol 20 mmol/L used in the same scenario as glucose did not induce HREC senescence. In HREC exposed to GLU and SUL, the senescent changes were smaller. HREC, which became senescent in the presence of GLU, demonstrated higher expression of genes regulating the synthesis of Il6 and VEGF-A, which was reflected by increased secretion of these cytokines (IL6 + 125%, p < 0.001 vs control and VEGF-A + 124% p < 0.001 vs control). These effects were smaller in the presence of SUL, and additionally, an increase of TEER in the senescent HREC was observed. Chronic exposure of HREC to high glucose concentration in medium accelerates their senescence, and that process is reduced when the cells are simultaneously exposed to Sulodexide. Additionally, Sulodexide decreases the secretion of IL6 and VEGF-A from senescent HREC and increases their TEER.


2007 ◽  
Vol 23 (1) ◽  
pp. 63-74 ◽  
Author(s):  
Mattias Gäreskog ◽  
Jonas Cederberg ◽  
Ulf J. Eriksson ◽  
Parri Wentzel

2020 ◽  
Author(s):  
María Jesús Sánchez‐Calabuig ◽  
Raúl Fernández‐González ◽  
Meriem Hamdi ◽  
Katrien Smits ◽  
Angela Patricia López‐Cardona ◽  
...  

1999 ◽  
Vol 276 (2) ◽  
pp. C507-C510 ◽  
Author(s):  
Henriette R. Oliveira ◽  
Rui Curi ◽  
Angelo R. Carpinelli

The activity of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSP) in isolated rat pancreatic islets exposed to high glucose concentration for a short period of time (60 min) was determined. High glucose concentration (16.7 mM) did not significantly alter catalase activity. GSP activity was increased by glucose at 5.6 mM, remaining elevated at higher concentrations up to 16.7 mM. However, the activity of SOD increased with glucose concentration, and this increment was closely correlated with the rate of insulin secretion ( r = 0.96). High potassium (30 mM) did not increase SOD activity, suggesting that the increase in intracellular ionic calcium concentration does not stimulate this enzyme activity. α-Ketoisocaproic acid and pyruvate, which are metabolized through the TCA cycle, did not increase SOD activity, indicating that the stimulation of SOD activity might be triggered by a factor produced through glycolysis or the pentose phosphate pathway.


Sign in / Sign up

Export Citation Format

Share Document