Recombinant Human Growth Hormone Activates Neuroprotective Growth Factors in Hypoxic Brain Injury in Neonatal Mice

Endocrinology ◽  
2021 ◽  
Vol 162 (3) ◽  
Author(s):  
Susan Jung ◽  
Klara Terörde ◽  
Helmuth-Günther Dörr ◽  
Regina Trollmann

Abstract Perinatal hypoxia severely disrupts cerebral metabolic and maturational programs beyond apoptotic cell death. Antiapoptotic treatments such as erythropoietin are suggested to improve outcomes in hypoxic brain injury; however, the results are controversial. We analyzed the neuroprotective effects of recombinant human growth hormone (rhGH) on regenerative mechanisms in the hypoxic developing mouse brain in comparison to controls. Using an established model of neonatal acute hypoxia (8% O2, 6 hours), P7 mice were treated intraperitoneally with rhGH (4000 µg/kg) 0, 12, and 24 hours after hypoxic exposure. After a regeneration period of 48 hours, expression of hypoxia-inducible neurotrophic factors (erythropoietin [EPO], vascular endothelial growth factor A [VEGF-A], insulin-like growth factors 1 and 2 [IGF-1/-2], IGF binding proteins) and proinflammatory markers was analyzed. In vitro experiments were performed using primary mouse cortical neurons (E14, DIV6). rhGH increased neuronal gene expression of EPO, IGF-1, and VEGF (P < .05) in vitro and diminished apoptosis of hypoxic neurons in a dose-dependent manner. In the developing brain, rhGH treatment led to a notable reduction of apoptosis in the subventricular zone and hippocampus (P < .05), abolished hypoxia-induced downregulation of IGF-1/IGF-2 expression (P < .05), and led to a significant accumulation of endogenous EPO protein and anti-inflammatory effects through modulation of interleukin-1β and tumor necrosis factor α signaling as well as upregulation of cerebral phosphorylated extracellularly regulated kinase 1/2 levels (ERK1/2). Indicating stabilizing effects on the blood-brain barrier (BBB), rhGH significantly modified cerebrovascular occludin expression. Thus, we conclude that rhGH mediates neuroprotective effects by the activation of endogenous neurotrophic growth factors and BBB stabilization. In addition, the modification of ERK1/2 pathways is involved in neuroprotective actions of rhGH. The present study adds further evidence that pharmacologic activation of neurotrophic growth factors may be a promising target for neonatal neuroprotection.

Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 467-472
Author(s):  
J Laurence ◽  
B Grimison ◽  
A Gonenne

Growth hormone (somatotropin) is a potent anabolic protein currently being evaluated clinically in cachexia associated with malignancy and human immunodeficiency virus (HIV) disease. Growth hormone can also lead to enhancement of lectin-mediated cellular proliferation, macrophage activation, and cytokine induction, events linked to induction of latent HIV in vitro. We thus explored the ability of recombinant human growth hormone (rhGH) to affect viral replication in acute and chronic HIV infection, and to alter transcription at the HIV- 1 long terminal repeat (LTR). A clone of promonocytic cells, chronically infected with HIV-1 and susceptible to viral induction by a variety of cytokines and protein kinase C activators, was unperturbed by rhGH used over broad concentrations (10 to 500 ng/mL) and time intervals. This unresponsiveness paralleled the lack of effect of rhGH on HIV-associated trans-activation in both monocytic and CD4+ T-cell lines. In contrast, rhGH enhanced viral replication in acutely infected peripheral blood mononuclear cells (PBMC) by twofold to 20-fold, albeit having no adverse effect on the antiviral efficacy of zidovudine (AZT). Augmentation of HIV growth correlated with stimulation of cellular DNA synthetic responses and an increase in tumor necrosis factor-alpha (TNF- alpha) secretion. These data are discussed in the context of ongoing clinical trials of rhGH in HIV-seropositive individuals with wasting syndromes.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 467-472 ◽  
Author(s):  
J Laurence ◽  
B Grimison ◽  
A Gonenne

Abstract Growth hormone (somatotropin) is a potent anabolic protein currently being evaluated clinically in cachexia associated with malignancy and human immunodeficiency virus (HIV) disease. Growth hormone can also lead to enhancement of lectin-mediated cellular proliferation, macrophage activation, and cytokine induction, events linked to induction of latent HIV in vitro. We thus explored the ability of recombinant human growth hormone (rhGH) to affect viral replication in acute and chronic HIV infection, and to alter transcription at the HIV- 1 long terminal repeat (LTR). A clone of promonocytic cells, chronically infected with HIV-1 and susceptible to viral induction by a variety of cytokines and protein kinase C activators, was unperturbed by rhGH used over broad concentrations (10 to 500 ng/mL) and time intervals. This unresponsiveness paralleled the lack of effect of rhGH on HIV-associated trans-activation in both monocytic and CD4+ T-cell lines. In contrast, rhGH enhanced viral replication in acutely infected peripheral blood mononuclear cells (PBMC) by twofold to 20-fold, albeit having no adverse effect on the antiviral efficacy of zidovudine (AZT). Augmentation of HIV growth correlated with stimulation of cellular DNA synthetic responses and an increase in tumor necrosis factor-alpha (TNF- alpha) secretion. These data are discussed in the context of ongoing clinical trials of rhGH in HIV-seropositive individuals with wasting syndromes.


1991 ◽  
Vol 164 (5) ◽  
pp. 1017-1020 ◽  
Author(s):  
C. J. Wiedermann ◽  
M. Niedermtihlbichler ◽  
H. Beimpold ◽  
H. Braunsteiner

2001 ◽  
Vol 21 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Cornelis H. Schröder ◽  
Leon M.J.W. Swinkels ◽  
Roel E. Reddingius ◽  
Fred G.J. Sweep ◽  
Hans L. Willems ◽  
...  

Objective To study the adsorption of erythropoietin and growth hormone to dialysis bags and tubing. Design In vitro study in which radiolabeled erythropoietin and recombinant human growth hormone were added to small-volume (50- and 250-mL) dialysis bags. Recovery was measured after 15-minute dwells. Experiments were performed in triplicate. Setting University hospital. Results Adsorption of erythropoietin and growth hormone was less than 7%. Conclusion Adsorption of erythropoietin and recombinant human growth hormone to dialysis bags and tubing is minimal. This finding provides another argument in favor of intraperitoneal therapy in pediatric peritoneal dialysis.


Blood ◽  
1993 ◽  
Vol 82 (3) ◽  
pp. 954-960 ◽  
Author(s):  
CJ Wiedermann ◽  
N Reinisch ◽  
H Braunsteiner

Monocyte infiltration occurs early in the course of inflammation and is a prerequisite for optimal repair of tissue damage. In this study, human recombinant growth hormone was shown to be a potent chemoattractant for human monocytes, inducing migration at picomolar concentrations of recombinant human growth hormone. Chemotaxis of monocytes was measured in vitro by a modified Boyden chamber assay using nitrocellulose micropore filters and measuring microscopically the migration depth of the leading front of monocytes. Somatostatin, which inhibits the release of growth hormone, and its long-acting analogue, octreotide, also stimulated chemotaxis of monocytes; however, the effective peptide concentration was in the micromolar range. When tested for chemotaxis in combination or in experiments using pretreatment with somatostatin and washing of treated cells, somatostatin significantly antagonized the chemotactic responses of monocytes to growth hormone. The inhibitory effect on growth hormone- stimulated chemotaxis was dose dependent and occurred at concentrations severalfold lower than the chemotactically active concentration of somatostatin. Combinations of growth hormone with interferon or substance P also deactivated the chemotactic responses. These observations suggest that human growth hormone may have a regulatory role in monocyte chemotaxis.


Sign in / Sign up

Export Citation Format

Share Document