PERFUSION STUDIES OF THE HUMAN PLACENTA. II. METABOLISM OF C14-17β-ESTRADIOL WITH AND WITHOUT ADDED HUMAN CHORIONIC GONADOTROPIN*†

1961 ◽  
Vol 21 (8) ◽  
pp. 895-908 ◽  
Author(s):  
PHILLIP TROEN
Endocrinology ◽  
2006 ◽  
Vol 147 (9) ◽  
pp. 4222-4233 ◽  
Author(s):  
Kristy A. Brown ◽  
Monique Doré ◽  
Jacques G. Lussier ◽  
Jean Sirois

Estrogen sulfotransferase (EST) is responsible for the sulfoconjugation of estrogens, thereby changing their physical properties and preventing their action via the estrogen receptors. These sulfoconjugated steroids no longer diffuse freely across the lipid bilayer; instead, they are exported by members of the ATP-binding cassette family, such as ABCC1. The objective of this study was to investigate the regulation of EST and ABCC1 during human chorionic gonadotropin (hCG)-induced ovulation/luteinization. The transcripts for EST and ABCC1 were cloned by RT-PCR, and the regulation of their mRNAs was studied in preovulatory follicles obtained during estrus at 0, 12, 24, 30, 33, 36, and 39 h after hCG. Results obtained from RT-PCR/Southern blot analyses showed significant changes in steady-state levels of both EST and ABCC1 mRNA after hCG treatment (P < 0.05). In granulosa cells, a significant increase in EST transcript was observed 30–39 h after hCG. Similarly, ABCC1 transcript levels were induced in granulosa cells 12–39 h after hCG. In contrast, no significant changes in either EST or ABCC1 were detected in theca interna samples after hCG. The increase in EST and ABCC1 transcripts observed in granulosa cells was reflected in preparations of intact follicle walls, suggesting that the granulosa cell layer contributes the majority of EST and ABCC1 expression in preovulatory follicles. The present study demonstrates that follicular luteinization is accompanied not only by a decrease in 17β-estradiol biosynthesis but also by an increase in expression of genes responsible for estrogen inactivation and elimination from granulosa cells, such as EST and ABCC1, respectively.


Endocrinology ◽  
2004 ◽  
Vol 145 (4) ◽  
pp. 1906-1915 ◽  
Author(s):  
Kristy A. Brown ◽  
Derek Boerboom ◽  
Nadine Bouchard ◽  
Monique Doré ◽  
Jacques G. Lussier ◽  
...  

Abstract 17β-Hydroxysteroid dehydrogenase type 4 (17βHSD4) has a unique multidomain structure, with one domain involved in 17β-estradiol inactivation. The objective of the study was to investigate the regulation of 17βHSD4 during human chorionic gonadotropin (hCG)-induced ovulation/luteinization. The equine 17βHSD4 cDNA was cloned and was shown to encode a 735-amino acid protein that is highly conserved (81–87% identity) compared with other mammalian orthologs. RT-PCR/Southern blot analyses were performed to study the regulation of 17βHSD4 transcripts in equine preovulatory follicles isolated between 0–39 h after hCG treatment. Results showed the presence of basal 17βHSD4 mRNA expression before hCG treatment, but an increase was observed in follicles obtained 24 h after hCG (P < 0.05). Analyses of isolated preparations of granulosa and theca interna cells identified basal mRNA expression in both layers, but granulosa cells appeared as the predominant site of follicular 17βHSD4 mRNA induction. A specific polyclonal antibody was raised against a fragment of the equine protein and used to study regulation of the 17βHSD4 protein. Immunoblots showed an increase in full-length 17βHSD4 protein in follicles 24 h after hCG (P < 0.05), in keeping with mRNA results. Immunohistochemical data confirmed the induction of the enzyme in follicular cells after hCG treatment. Collectively, these results demonstrate that the gonadotropin-dependent induction of follicular luteinization is accompanied by an increase in 17βHSD4 expression. Considering the estrogen-inactivating function of 17βHSD4, its regulated expression in luteinizing preovulatory follicles appears as a potential complementary mechanism to reduce circulating levels of 17β-estradiol after the LH surge.


Sign in / Sign up

Export Citation Format

Share Document