scholarly journals Follicle-Stimulating Hormone and Luteinizing Hormone/Chorionic Gonadotropin Stimulation of Vascular Endothelial Growth Factor Production by Macaque Granulosa Cells from Pre- and Periovulatory Follicles1

1997 ◽  
Vol 82 (7) ◽  
pp. 2135-2142
Author(s):  
Lane K. Christenson ◽  
Richard L. Stouffer

Granulosa cells in the ovulatory follicle express messenger ribonucleic acid encoding vascular endothelial growth factor (VEGF), an agent that may mediate the neovascularization of the developing corpus luteum, but it is not known whether luteinizing granulosa cells synthesize and secrete VEGF during the periovulatory interval. Studies were designed to evaluate the effects of an in vivo gonadotropin surge on VEGF production by macaque granulosa cells (study 1) and to test the hypothesis that gonadotropins act directly on granulosa cells to regulate VEGF production (study 2). Monkeys received a regimen of exogenous gonadotropins to promote the development of multiple preovulatory follicles. Nonluteinized granulosa cells (i.e. preovulatory; NLGC) and luteinized granulosa cells (i.e. periovulatory; LGC) were aspirated from follicles before and 27 h after an ovulatory gonadotropin bolus, respectively. Cells were either incubated for 24 h in medium with or without 100 ng/mL hCG (study 1) or cultured for 6 days in medium with or without 100 ng/mL hCG or 0.1, 1, 10, and 100 ng/mL of recombinant human LH (r-hLH) or r-hFSH (study 2). Culture medium was assayed for VEGF and progesterone. In study 1, LGC produced 8-fold greater levels of VEGF than NLGC (899 ± 471 vs. 111 ± 26 pg/mL, mean ± sem; P < 0.05). In vitro treatment with hCG increased (P < 0.05) VEGF production by NLGC to levels that were not different from the LGC incubated under control conditions. In vivo bolus doses of r-hCG (100 and 1000 IU) and r-hFSH (2500 IU) were equally effective in elevating granulosa cell VEGF production. In study 2, in vitro treatment with r-hFSH, r-hLH, and hCG markedly increased (P< 0.05) VEGF and progesterone production by the NLGC in a dose- and time-dependent manner. By comparison, the three gonadotropins (100 ng/mL dose) only modestly increased VEGF and progesterone production by LGC. These experiments demonstrate a novel role for the midcycle surge of gonadotropin (LH/CG or FSH) in primates to promote VEGF production by granulosa cells in the periovulatory follicle. Further, the data demonstrate that FSH-like as well as LH-like gonadotropins directly stimulate VEGF synthesis by granulosa cells.

2003 ◽  
Vol 55 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Michael D. Mueller ◽  
Elizabeth A. Pritts ◽  
Charles J. Zaloudek ◽  
Ekkehard Dreher ◽  
Robert N. Taylor

Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4150-4166 ◽  
Author(s):  
Dmitry Gabrilovich ◽  
Tadao Ishida ◽  
Tsunehiro Oyama ◽  
Sophia Ran ◽  
Vladimir Kravtsov ◽  
...  

Abstract Defective function of dendritic cells (DC) in cancer has been recently described and may represent one of the mechanisms of tumor evasion from immune system control. We have previously shown in vitro that vascular endothelial growth factor (VEGF), produced by almost all tumors, is one of the tumor-derived factors responsible for the defective function of these cells. In this study, we investigated whether in vivo infusion of recombinant VEGF could reproduce the observed DC dysfunction. Continuous VEGF infusion, at rates as low as 50 ng/h (resulting in serum VEGF concentrations of 120 to 160 pg/mL), resulted in a dramatic inhibition of dendritic cell development, associated with an increase in the production of B cells and immature Gr-1+ myeloid cells. Infusion of VEGF was associated with inhibition of the activity of the transcription factor NF-κB in bone marrow progenitor cells. Experiments in vitro showed that VEGF itself, and not factors released by VEGF-activated endothelial cells, affected polypotent stem cells resulting in the observed abnormal hematopoiesis. These data suggest that VEGF, at pathologically relevant concentrations in vivo, may exert effects on pluripotent stem cells that result in blocked DC development as well as affect many other hematopoietic lineages.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2275-2283 ◽  
Author(s):  
Naoki Nakayama ◽  
Jae Lee ◽  
Laura Chiu

Abstract The totipotent mouse embryonic stem (ES) cell is known to differentiate into cells expressing the β-globin gene when stimulated with bone morphogenetic protein (BMP)-4. Here, we demonstrate that BMP-4 is essential for generating both erythro-myeloid colony-forming cells (CFCs) and lymphoid (B and NK) progenitor cells from ES cells and that vascular endothelial growth factor (VEGF) synergizes with BMP-4. The CD45+ myelomonocytic progenitors and Ter119+ erythroid cells began to be detected with 0.5 ng/mL BMP-4, and their levels plateaued at approximately 2 ng/mL. VEGF alone weakly elevated the CD34+ cell population though no lymphohematopoietic progenitors were induced. However, when combined with BMP-4, 2 to 20 ng/mL VEGF synergistically augmented the BMP-4-dependent generation of erythro-myeloid CFCs and lymphoid progenitors from ES cells, which were enriched in CD34+ CD31lo and CD34+CD45− cell populations, respectively, in a dose-dependent manner. Furthermore, during the 7 days of in vitro differentiation, BMP-4 was required within the first 4 days, whereas VEGF was functional after the action of BMP-4 (in the last 3 days). Thus, VEGF is a synergistic enhancer for the BMP-4-dependent differentiation processes, and it seems to be achieved by the ordered action of the 2 factors.


1997 ◽  
Vol 12 (12) ◽  
pp. 2756-2761 ◽  
Author(s):  
A. Lee ◽  
L. K. Christenson ◽  
P. E. Patton ◽  
K. A. Burry ◽  
R. L. Stouffer

2006 ◽  
Vol 14 (3) ◽  
pp. 237-248 ◽  
Author(s):  
Anne Schänzer ◽  
Frank-Peter Wachs ◽  
Daniel Wilhelm ◽  
Till Acker ◽  
Christiana Cooper-Kuhn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document