scholarly journals Complete Hypogonadotropic Hypogonadism Associated with a Novel Inactivating Mutation of the Gonadotropin-Releasing Hormone Receptor1

1999 ◽  
Vol 84 (10) ◽  
pp. 3811-3816
Author(s):  
François P. Pralong ◽  
Fulgencio Gomez ◽  
Einar Castillo ◽  
Susanna Cotecchia ◽  
Liliane Abuin ◽  
...  
Author(s):  
Ravi Kant ◽  
Mahendra Kumar Meena

Kisspeptin or GPR-54 is a product of KISS 1 gene regulating the production of gonadotropin releasing hormone (GnRH), luteinizing (LH) as well follicle stimulating hormone (FSH). Both LH and FSH are important hormones for reproduction in animals as well in humans. The recognition of Kisspeptin has a landmark bearing in reproductive biology. Few recent pilot studies have convincingly proven it to be a promising molecule in treating infertile couples especially those having hypogonadotropic hypogonadism not responding to conventional treatment.


2004 ◽  
pp. U89-U94 ◽  
Author(s):  
HA Delemarre-van de Waal

BACKGROUND: Puberty is the result of reactivation of the gonadotropin releasing hormone (GnRH) pulse generator resulting in an increasing release of GnRH by the hypothalamus, which stimulates the gonadotropic cells of the pituitary to synthesize and secrete LH and FSH. Hypogonadotropic hypogonadism (HH) is often the result of GnRH deficiency. The clinical picture is characterized by the absence of pubertal development and infertility. It is difficult to differentiate HH from delayed puberty since low gonadotropin and low testosterone levels are found in both conditions. We hypothesized that long-term GnRH administration may differentiate between the two conditions by a difference in the increase of gonadotropins, the idea being that in normal delayed puberty the pituitary of the patient has been primed with GnRH during the fetal and early postnatal period. PATIENTS: Seventeen adolescents suspected of having hypogonadotropic hypogonadism were treated with pulsatile GnRH for 7 days. At the present time, the diagnosis of these patients is known and the results of the long-term GnRH stimulation have been evaluated according to the present diagnosis. RESULTS: The results show that the increase in gonadotropins following GnRH treatment is similar in both conditions. Therefore, at a prepubertal age a normal delayed puberty cannot be distinguished from hypogonadotropic hypogonadism using long-term GnRH stimulation. Long-term pulsatile GnRH treatment is a physiological therapy for the induction of puberty. Unlike testosterone it has the advantage of stimulation of testicular growth and fertility, as well as virilization, in males. We have treated 68 male patients with HH with pulsatile GnRH. The results show testicular growth and virilization in all the patients and spermatogenesis in 58 patients. Wearing a portable pump is cumbersome. However, the patients were very motivated and adapted very easily to this inconvenience. When spermatogenesis had developed, GnRH treatment was changed to human chorionic gonadotropin (hCG) administration 1-2 times per week intramuscularly or subcutaneously. During hCG therapy spermatogenesis was maintained or even improved. At least ten patients fathered children. CONCLUSION: Pulsatile GnRH cannot distinguish between a normal delayed puberty and a hypothalamic defect in still prepubertal patients. Pulsatile GnRH offers an appropriate way to initiate testicular growth including virilization and fertility in males with hypogonadotropic hypogonadism.


Author(s):  
Irene Berges-Raso ◽  
Olga Giménez-Palop ◽  
Elisabeth Gabau ◽  
Ismael Capel ◽  
Assumpta Caixàs ◽  
...  

Summary Kallmann syndrome is a genetically heterogeneous form of hypogonadotropic hypogonadism caused by gonadotropin-releasing hormone deficiency and characterized by anosmia or hyposmia due to hypoplasia of the olfactory bulbs; osteoporosis and metabolic syndrome can develop due to longstanding untreated hypogonadism. Kallmann syndrome affects 1 in 10 000 men and 1 in 50 000 women. Defects in 17 genes, including KAL1, have been implicated. Kallmann syndrome can be associated with X-linked ichthyosis, a skin disorder characterized by early onset dark, dry, irregular scales affecting the limb and trunk, caused by a defect of the steroid sulfatase gene (STS). Both KAL1 and STS are located in the Xp22.3 region; therefore, deletions in this region cause a contiguous gene syndrome. We report the case of a 32-year-old man with ichthyosis referred for evaluation of excessive height (2.07 m) and weight (BMI: 29.6 kg/m2), microgenitalia and absence of secondary sex characteristics. We diagnosed Kallmann syndrome with ichthyosis due to a deletion in Xp22.3, a rare phenomenon. Learning points: Kallmann syndrome is a genetically heterogeneous disease characterized by hypogonadotropic hypogonadism with anosmia or hyposmia associated with defects in the production or action of gonadotropin-releasing hormone (GnRH) and hypoplasia of the olfactory bulbs. Several genes have been implicated in Kallmann syndrome, including KAL1, located in the Xp22.3 region, which is responsible for X-linked Kallmann syndrome. KAL1 encodes the protein anosmin-1. X-linked ichthyosis is caused by deficiency of the steroid sulfatase enzyme, encoded by STS, which is also located in the Xp22.3 region. Deletions involving this region can affect both genes and result in contiguous gene syndromes. Phenotype can guide clinicians toward suspicion of a specific genetic mutation. KAL1 mutations are mostly related to microgenitalia, unilateral renal agenesis and synkinesia, although patients need not present all these abnormalities. Longstanding untreated hypogonadism is associated with poor sexual health, osteoporosis and metabolic syndrome with the concomitant risk of developing type 2 diabetes mellitus and obesity. Treatment aims to promote the development of secondary sex characteristics, build and sustain normal bone and muscle mass and restore fertility. Treatment can also help minimize some psychological consequences. Treatments available for patients with congenital GnRH deficiency such as Kallmann syndrome include gonadal steroid hormones, human gonadotropins and GnRH. The choice of therapy depends on the goal or goals.


Sign in / Sign up

Export Citation Format

Share Document